SAFETY NOTICE

CAUTION

ALL SERVICE AND REBUILDING INSTRUCTIONS CONTAINED HEREIN ARE APPLICABLE TO, AND FOR THE CONVENIENCE OF, THE AUTOMOTIVE TRADE ONLY. All test and repair procedures on components or assemblies in non-automotive applications should be repaired in accordance with instructions supplied by the manufacturer of the total product.

Proper service and repair is important to the safe, reliable operation of all motor vehicles. The service produces recommended and described in this publication were developed for professional service personnel, and are effective methods for performing vehicle repair. Following these procedures will help ensure efficient economical vehicle performance and service reliability. Some service procedures require the use of special tools designed for specific procedures. These special tools should be used as recommended throughout this publication.

Special attention should be exercised when working with spring-or tension-loaded fasteners and devices such as E-Clips, Circlips, Snap rings, etc., since careless removal may cause personal injury. Always wear safety goggles when working on vehicles or vehicle components.

It is important to note that this publication contains various Cautions and Warnings. These should be read carefully in order to minimize risk of personal injury or the possibility that improper service methods may damage the vehicle or render it unsafe. It is important to note that these Cautions and Warnings cover only the situations and procedures DaimlerChrysler Corporation has encountered and recommended. DaimlerChrysler Corporation cannot possibly know, evaluate, and advise the service trade of all conceivable ways in which service may be performed, or of the possible hazards of each. Consequently, DaimlerChrysler has not undertaken any such broad service review. Accordingly, anyone uses a service procedure or tool that is not recommended in this publication must be certain that neither personal safety, nor vehicle safety, will be jeopardized by the service methods they select.
MANUFACTURER ADVERTISEMENTS
(CLICK ON LINKS)

• PPG INDUSTRIES
• TECH AUTHORITY
• DAIMLERCHRYSLER PAINT CONDITION DECK, SEALER SOUND DEADENER REPAIR GUIDE
• MOPAR PARTS
• DAIMLERCHRYSLER PLASTIC REPAIR GUIDE, WELDING & WELD BONDING MANUAL
• HEMI.COM
• TEAM PSE FACILITY PLANNING SERVICES

Copies of the following Body Repair Manuals are available by calling 1-800-890-4038
• Chrysler 300 (81-316-0531CD)
• Dakota (81-316-0634CD)
• Durango (81-316-0430CD)
• Jeep Commander (81-316-0636-CD)
• Jeep Grand Cherokee (81-316-0635-CD)
• Pacífica (81-316-0530-CD)
• PT Convertible (81-316-0531-CD)
• Sprinter Van (81-316-0533-CD)
INTRODUCTION

Dodge Caliber

This manual has been prepared for use by all body technicians involved in the repair of the Dodge Caliber.

This manual shows:
- Typical unibody panels contained in these vehicles
- The weld locations for these panels
- The types of welds for the panel
- Proper sealer types and correct locations

Body Construction Characteristics

History of Collision Repair

Corrosion Protection

Vehicle Identification Number Information

Paint Codes Information

Welded Panel Replacement

Sealer Locations

Structural Adhesive Locations

NVH/Structural Foam Locations

Sound Deadener Locations

Frame/Body Dimensions

Front Frame Rail Sectioning Procedure

Additional Support/Information

DaimlerChrysler Motors Corporation reserves the right to make improvements in design or to change specifications to these vehicles without incurring any obligation upon itself.
BODY CONSTRUCTION CHARACTERISTICS

Definitions of Steels used in the Jeep Compass:
MS 66 - Represents an uncoated Hot Rolled Steel Sheet used mainly for interior braces and reinforcements.
MS 67 - Represents an uncoated Cold Rolled Sheet structural steel used in areas where structural integrity is critical. EG., the type of steel used for the “A” pillar.
MS 264 - Represents an uncoated high strength low alloy (HSLA) steel used in applications where structural integrity is critical.
MS 6000-44A - Low carbon, hot dipped galvanneal (or EGA) with 45 g/m² minimum coating weight on both sides. - Most common Sheet Steel product used by Chrysler.
MS 6000-44VA - 50 ksi min. yield strength, HSLA, killed steel, with 44 g/m² minimum coating weight on both sides. - Most common high strength coated steel product used by Chrysler.
MS 10176 - Boron-alloyed steels are analogy with 22MnB5 which are matched to the hardening process die. Sheet blanks are heat treated in the furnace on an inert gas or air atmosphere and then formed in the press die and hardened at the same time. The boron is produced in two configurations one for use in upper body and one that has hot-dip aluminized coating for corrosion protection.
MS82-1228 - Represent a coated high strength low alloy (HSLA) hot or cold rolled sheet steel used in applications where structural integrity is critical.

PARTIAL LIST OF STEEL APPLICATIONS

Galvannealed Steel

<table>
<thead>
<tr>
<th>Body Side Aperture</th>
<th>Rear Door - Inner Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowl Plenum Panel</td>
<td>Rear Door - Outer Panel</td>
</tr>
<tr>
<td>Cowl Side Panel</td>
<td>Rear Floor Pan</td>
</tr>
<tr>
<td>Dash Panel</td>
<td>Rear Floor Pan Front Crossmember</td>
</tr>
<tr>
<td>Front Door - Inner Panel</td>
<td>Rear Floor Pan Side Rail</td>
</tr>
<tr>
<td>Front Door - Outer Panel</td>
<td>Rear Suspension Crossmember</td>
</tr>
<tr>
<td>Front Fender</td>
<td>Rear Quarter Panel - Inner</td>
</tr>
<tr>
<td>Front Floor Pan</td>
<td>Rear Quarter Panel - Outer</td>
</tr>
<tr>
<td>Front Hinge Pillar</td>
<td>Rear Wheelhouse - Inner</td>
</tr>
<tr>
<td>Front Rail</td>
<td>Roof Panel</td>
</tr>
<tr>
<td>Front Strut Mounting Tower</td>
<td>UpperLoad Path Beam</td>
</tr>
<tr>
<td>Front Wheelhouse (Front and Rear)</td>
<td>Upper Radiator Crossmember</td>
</tr>
</tbody>
</table>
BODY CONSTRUCTION CHARACTERISTICS

The following measures have been implemented in order to provide maximum corrosion prevention and protection.

1. The use of galvannealed coatings throughout the body structure.
2. Ecoat is used on the complete body in all instances.
4. Stone-chipping resistant primer application.
5. Underbody corrosion prevention.
New for Body Tailor Rolled Hotstamp (Boron Steel) B-pillar Reinforcement

- **Part Name**
- **Gage (mm)**
- **Material**
- **Weight (lbs)**

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Gage (mm)</th>
<th>Material</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinf - Body Center Pillar Upper</td>
<td>Various</td>
<td>MS-10176</td>
<td>6.4438</td>
</tr>
<tr>
<td>Reinf - Body Center Pillar Lower</td>
<td>1.042</td>
<td>MS-6000 44A</td>
<td>2.8996</td>
</tr>
<tr>
<td>T/Plate - B-Pillar Front Door St</td>
<td>n/a</td>
<td>n/a</td>
<td>0.063</td>
</tr>
<tr>
<td>(4) M8 Weld Nuts</td>
<td>n/a</td>
<td>n/a</td>
<td>0.056</td>
</tr>
</tbody>
</table>

PER VEHICLE SAVINGS 11.2732

When welding Hot Stamped (Boron) Steel to Mild Steel use resistance spot welds. Weld nuggets should be 6.5mm. If parts originally had structural adhesive between them replace it using Mopar structural adhesive.
When welding Hot Stamped (Boron) Steel to Hot Stamped (Boron) Steel use resistance spot welds and Mopar structural adhesive. Weld nuggets should be 6.5mm.
PM-49 New Net Build Door Striker Tap Plate

Webbing allows +/-3mm adjustment if necessary after welding.

To Adjust striker in the field loosen striker screws to 100 In-Lbs, bump or pull striker in desired direction, re-torque to 250 In-Lb.
Tech Authority Website contains the most complete listings, descriptions, and ordering information for DaimlerChrysler Corporation service information materials. The materials included in Tech Authority cover every aspect of repairing and maintaining Chrysler, Plymouth, Dodge, Dodge Truck and Jeep® vehicles.

Tech Authority is an extensive online catalogue of Diagnostic procedure manuals, student reference Books, tech training programs, owner's manuals, Service manuals, and technical service bulletin Manuals. The materials range from written and Illustrated books to the highly acclaimed Master Tech Video series.

By Telephone: Monday - Friday, 8:00-4:30 E.S.T.

Telephone orders may be placed at the number below. Credit cards are accepted (no COD's). Please have your Order information available at time of call.

By Phone: (800) 890-4038
By Fax: (440) 572-0815

Visit our website at:
www.techauthority.daimlerchrysler.com
HISTORY OF COLLISION REPAIR

Time was, if you had an accident, the call went out to the insurance company - to the collision shop - or several shops - get the lowest bid and in no time at all, the vehicle was repaired.

The facilities, training, and equipment were simple. Use a torch to cut, shape, and bend. Use something substantial as an anchoring point - maybe a tree and then just pull.

Use plenty of solder or body putty to make it look good. With the frame and body vehicle, the job was easy; first straighten the frame - then fix the mechanical components and the body work was cosmetic. This was all well and good until the mid - '70s.

Then, the designers, engineers, and manufacturers had to find ways to make the vehicles energy efficient - and that meant unibody cars. The unibody concept wasn't new - back in the '30s the Chrysler Air Flow had it - race cars have it - and now the driving public worldwide has it.

The change came quickly. Manufacturers devoted time, money, and talent to develop the unibody car. The public was ready to buy and did!

But then came the problem! The collision repair industry wasn't given the luxury of taking their time to train people in the new technology - or take time to plan for new equipment.

The collision happened and the vehicle had to be fixed. Cars that were repairable were being totalled.

Cars that were repaired were not repaired correctly. Everybody was in a quandary - auto manufacturer - insurance company - repair equipment people - body shops - and repair technicians.

The problem started in the early '70s and body shops are still catching up today. Yesterday's "ding" is today's "crash". It takes trained technicians and sophisticated equipment to do the repair today.

That's why DaimlerChrysler is taking the time and effort to get the right information into the hands of the people that handle the repair job.
Corrosion Protection

Factory Applied Corrosion Protection

During the manufacturing of the unibody car, the manufacturer applies "corrosion protection" using specialized manufacturing processes. This system is not duplicated in the collision repair body shop. However, the body shop still has a responsibility to apply corrosion protection to the unibody vehicle. So, the collision repair shop must use alternative materials to do the corrosion protection job after the repair.

This corrosion protection is required regardless of the environment and weather conditions the vehicle will be operated in. Corrosion protection is as important in the desert as it is at the seaside. Corrosion damage can literally destroy the structural integrity of a unibody vehicle from within. Many corrosion protection systems are destroyed during collision repair operations. Metal finishing, metal working and fatigue can cause the breakdown of many of the corrosion barriers installed at the factory. The use of heat for stress relief and welding also destroys factory installed corrosion barriers. These corrosion barriers and corrosion protection systems must be replaced after collision repair to ensure that the structural integrity of the unibody will remain intact throughout its life. In the past, only vehicles with aftermarket or after delivery corrosion protection systems installed were serviced after collision repair to restore the corrosion protection system.

An understanding of the types of corrosion which affect the unibody vehicles will assist in understanding why the factory protection systems are important, how the factory protection systems consist of and how the systems’ protection is replaced after collision and electrolytic corrosion. Some of the more common types of corrosion are crevice corrosion, pitting, galvanic corrosion, stress corrosion, cracking, fretting, and erosion corrosion.
Corrosion Protection

Crevice corrosion is a form of localized attack that occurs in areas on metal surfaces exposed to the elements. Examples include spot weld lap joints, threaded or riveted connections, gasket fittings, porous welds, valve seats.

Pitting is the corrosion of a metal surface at points or small areas which look like a small hole in the metal.

Galvanic corrosion is the type that occurs when dissimilar metals are in electrical contact while immersed in an electrolyte.
Corrosion Protection

The penetration of corrosive solutions into these small areas, with widths that are typically a few thousandths of an inch, can result in various types of failures: the metal surface may become rusty in appearance, operating components may seize when protective coatings may have been removed from the metal surface. The coating of zinc on steel, known as galvanized, is an example of sacrificial cathodic protection.

An example of galvanic corrosion on the automobile is a stainless steel trim molding on a painted mild steel. When the paint becomes damaged, a galvanic corrosion cell is formed between the passive stainless steel (cathode) and the steel (anode). The corrosion leads to what would look like a rust stain. Methods of reducing galvanic corrosion include the use of compatible materials, minimizing of cathode-to-anode areas, the insulation of dissimilar metal contacts and the use of thick, replaceable sections.

Stress corrosion, cracking, fretting, and erosion corrosion.

Corrosion cracking is the early cracking of metals produced by the combined action of tensile stress and a corrosive atmosphere.

Corrosion fatigue is cracking due to the action of stresses and corrosion. Methods of reducing corrosion fatigue include the reduction in stress and the use of coatings.

Fretting is the deterioration of a metal at contact surfaces due to the presence of a corrosive and relative motion between the surfaces. The two metal surfaces initially are covered with an oxide film that becomes abraded during vibration. The results are oxide particles that become corroded. During the collision repair process, the factory protection materials become damaged from working the metals, or from the use of heat in the repair operations. If these factory protection materials are not replaced with some similar protection material after repair, a corrosion hot spot is formed. A corrosion hot spot is a small unprotected area surrounded by a protected area throughout the rest of the vehicle. the hot spot effect causes rapid deterioration of the unprotected area. This deterioration takes place at a much faster rate, sometimes 10-12 times faster than if the entire car were unprotected. The hot spot effect is created because all the corrosive factors are channeled to the unprotected area much the same way all material flowing through a funnel is concentrated in a small area. This hot spot effect means that corrosion failures to the unibody structure could occur in a short period of time even in an atmosphere normally not subject to corrosion. The hot spot effect can cause rapid deterioration of unibody structures from corrosion damage in a desert as well as seaside.
Corrosion Protection

The types of materials used in rustproofing application include oil based materials, wax base materials, primers and color coats. The most important properties of rustproofing materials are adhesion, toughness, and the resistance to the environment. The best coating in the world is not effective unless it is present in the right place at the right time.

Corrosion Protection Information

When making the collision repair, refer to the manufacturer's information on where corrosion protection and sealants are applied. Be sure to follow the recommendations. The application process is usually included with the material manufacturer's information so be sure to read and understand it before proceeding with the repair.

Collision Repair Corrosion Protection Materials

The materials must provide good electrolyte barriers. The material must also be able to penetrate tiny crevices and prevent abrasive corrosion. The material must be compatible with paint systems as many areas of the car must be treated before paint is applied.

Materials containing silicones will cause paint conditions such as fish eyes if they are applied before the repaired vehicle is painted. So no silicone containing material is to be used. As many of the repair areas are more accessible before final assembly and painting, the non-silicone type materials are a must for this type of application.

When protecting an enclosed area, fog type properties for the corrosion protection material are a plus. The fog properties make the material much less susceptible to operator error or misapplication. With a fog type material, once the material is introduced inside of an enclosure, the fog spreads rapidly and evenly into all areas including tiny crevices. The fog type materials do not require direct spray application to be effective. Fog type materials are also very effective in coating over any existing rusted or corrosion damaged areas and preventing further corrosion of these areas. This is especially important on repairs of older vehicles.
Corrosion Protection

Spray Accessibility to the Repair

Being able to achieve fog spray penetration into enclosed cavities as well as open areas requires application equipment, which includes an assortment of wands of various lengths and design.

Some areas are more effectively treated by brush application of corrosion protection material before they are assembled. A good example of this is an inner and outer engine compartment side rail area. Brush application to the inside of these areas as individual pieces is easy before assembly and can be followed by a light fog application to the weld areas and the crevices formed during assembly after the rails are assembled. Brush application keeps the foreign material from getting between welded joints during assembly yet gives good coverage to general areas with easy application. The material selected in addition to paint compatibility features and fog application features is also an excellent brush application material. Repaired areas, boxed in or closed in are more easily treated during assembly using fog and brush on techniques. Care must be taken to keep the corrosion materials away from the welding areas as welding contamination might take place. Brush-on applications are used before welding and fog in applications are used after welding assemblies together.
Corrosion Protection

Desired Characteristics of Corrosion Protection Material

1. Corrosion prevention material- The material must displace water to prevent corrosion. This can be tested by spraying water on an open panel on the floor, then spraying the corrosion preventative material over the watered panel and observing if the material displaces the water.

2. Creepage of material- To insure thorough and complete protection coverage, the material should have a "creep" capability, approximately 1/4 inch per minute while drying. This assures protective penetration of pinch welds, cracks, etc.

3. Safe material- Material should be non-combustible when dried and when wet unable to support a fire after ignition.

4. Clean-up- The material should be of a viscosity which inhibits runs or drips. Overspray on a vehicle's painted surface should wipe off easily without solvent when wet, with solvent when dry. The material should also dry clean off clothing.

5. Guarantee/Warranty- The corrosion protection has to be done to maintain factory corrosion warranty. Manufacturer's recommendations must be followed.

Glossary:
Abrasion Corrosion - Rubbing or hitting of one material by another
Corrosion Protection - Material applied to deter corrosion (oxidation)
Crevice Corrosion - Oxidation when two metals are joined
Electrolytic Corrosion - Electrical action taking place between two materials in the presence of an electrolyte (liquid)
Fogging - Applying material in a mist form
Fretting - Deterioration of metal at contact surfaces due to motion and corrosive elements
Galvanic Corrosion - Electrical action (electrolysis) between two dissimilar metals in the presence of electrolyte (liquid)
Hot Spot - An unprotected area subject to corrosion
Pitting Corrosion - Corrosion on a surface the results in a small "specks" or "pinholes"
Stress of Fatigue, Cracking Corrosion - Cracking due to stress and atmospheric elements
EXPECT THE HIGHEST CALIBER

Make your job easier and your customers happier. When you’re repairing Dodge, Chrysler and Jeep® vehicles, nothing compares to Mopar original equipment collision repair parts. You get top quality parts that are easy to install and result in the best fit and finish — something your customers are sure to appreciate. Plus, Mopar collision repair parts come with a limited warranty backed by Dodge, Chrysler and Jeep® dealers nationwide.

Call your local dealer today for all your Mopar parts needs.

© 2006, DaimlerChrysler Motors Company, LLC. All rights reserved. Chrysler, Jeep, Dodge and Mopar are registered trademarks of DaimlerChrysler Corporation.
DODGE CALIBER VEHICLE IDENTIFICATION NUMBER DESCRIPTION

The Vehicle Identification Number (VIN) can be viewed through the windshield at the upper left corner of the instrument panel, near the left windshield pillar. The VIN consists of 17 characters in a combination of letters and numbers that provide specific information about the vehicle. Refer to VIN Code Breakdown Chart for decoding information. To protect the consumer from theft and possible fraud the manufacturer is required to include a Check Digit at the ninth position of the vehicle identification number. The check digit is used by the manufacturer and government agencies to verify the authenticity of the vehicle and official documentation. The formula to use the check digit is not released to the general public.
VEHICLE IDENTIFICATION NUMBER DECODING CHART

<table>
<thead>
<tr>
<th>POSITION</th>
<th>INTERPRETATION</th>
<th>CODE = DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Country of Origin</td>
<td>1 = Manufactured by Daimler Chrysler Corporation</td>
</tr>
<tr>
<td>2</td>
<td>Make</td>
<td>B = Dodge</td>
</tr>
<tr>
<td>3</td>
<td>Vehicle Type</td>
<td>3 = Passenger Car</td>
</tr>
<tr>
<td>4</td>
<td>Restraint System</td>
<td>J = Without Side Air Bags</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H = With Side Air Bags</td>
</tr>
<tr>
<td>5</td>
<td>Vehicle Line (PM)</td>
<td>3 = Caliber Right Hand Drive (FWD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B = Caliber Left Hand Drive (FWD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E = Caliber Left Hand Drive (AWD)</td>
</tr>
<tr>
<td>6</td>
<td>Series</td>
<td>2 = Caliber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Caliber SXT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Caliber R/T</td>
</tr>
<tr>
<td>7</td>
<td>Body Style</td>
<td>8 = Hatchback 4 Door</td>
</tr>
<tr>
<td>8</td>
<td>Engine</td>
<td>C = 1.8L 4 Cyl. 16V DOHC Dual VVT GASoline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A = 2.0L 4 Cyl. 16V DOHC Diesel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B = 2.0L 4 Cyl. 16V DOHC 5MPI Gasoline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K = 2.4L 4 Cyl. 16V Dual VVT Gasoline</td>
</tr>
<tr>
<td>9</td>
<td>Check Digit</td>
<td>0 through 9 or X</td>
</tr>
<tr>
<td>10</td>
<td>Model Year</td>
<td>7 = 2007</td>
</tr>
<tr>
<td>11</td>
<td>Assembly Plant</td>
<td>D = Belvidere Assembly</td>
</tr>
<tr>
<td>12 through 17</td>
<td></td>
<td>Vehicle Build Sequence</td>
</tr>
</tbody>
</table>
A vehicle certification label is attached to every DaimlerChrysler Corporation vehicle. The label certifies that the vehicle conforms to all applicable Federal Motor Vehicle Standards. The label also lists:

- Month and year of vehicle manufacture.
- Gross Vehicle Weight Rating (GVWR). The gross front and rear axle weight ratings (GAWR’s) are based on a minimum rim size and maximum cold tire inflation pressure.
- Vehicle Identification Number (VIN).
- Type of vehicle.
- Type of rear wheels.
- Bar code.
- Month, Day and Hour (MDH) of final assembly.
- Paint and Trim codes.
- Country of origin.

The label is located on the driver-side door shut-face.
DODGE CALIBER PAINT CODES

EXTERIOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH</td>
<td>Inferno Red Crystal Pearl Coat</td>
</tr>
<tr>
<td>VYH</td>
<td>Solar Yellow Clear Coat</td>
</tr>
<tr>
<td>DV6</td>
<td>Sunburst Orange Pearl Coat</td>
</tr>
<tr>
<td>CB6</td>
<td>Marine Blue Pearl Coat</td>
</tr>
<tr>
<td>DBM</td>
<td>Steel Blue Metallic Pearl Coat</td>
</tr>
<tr>
<td>WS2</td>
<td>Bright Silver Metallic Clear Coat</td>
</tr>
<tr>
<td>DX8</td>
<td>Black Clear Coat</td>
</tr>
<tr>
<td>SW1</td>
<td>Stone White Clear Coat</td>
</tr>
</tbody>
</table>

INTERIOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Pastel Slate Gray (DA)</td>
</tr>
<tr>
<td>B</td>
<td>Pastel Pebble Beidge/Medium Pebble Beidge (KA)</td>
</tr>
</tbody>
</table>
DODGE CALIBER PAINT CODE LOCATION

The vehicle certification label identifies the paint code. This label is located on the driver’s door shut face.
The basic parts of the body structure are the welded panels. This section contains a brief description of the placement of some of the panels and their weld locations.

Note: To ensure the strongest, most durable and cleanest welds possible, perform testing before and during all weld procedures. Always follow American Weld Society specifications and procedures.

Note: Diagrams do not show all of the parts.

Explanation of Manual Contents .. Liftgate ..
Front Floor .. Engine Box Assembly ..
Sidemember .. Plenum/Dash ..
Rear Floor .. Engine Box Complete ..
Front Rails .. Front Floor Complete ...
Plenum ... Rear Floor Complete ..
Dash .. Underbody Complete ...
Engine Box ... Body Side Aperture Inner ..
Body Side Aperture ... Body Side Aperture Outer ..
Hood and Front Fenders .. Body Side Aperture Complete ...
Front Door .. Roof without Sunroof ..
Rear Door .. Body in White Complete ..

Back to Index
Explanation of Welding/Sealer Information

The major construction of a unibody vehicle consists of welded panels that create the supporting structure for all components and assemblies of the vehicle. Here are some examples for replacement of these parts.

Certain body components must use sealers to ensure proper assembly. Be sure to check the **Body Sealing Locations** and **Structural Adhesive Sections** for location and sealer type.

<table>
<thead>
<tr>
<th>SEALER LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thumbgrade Sealer</td>
</tr>
<tr>
<td>Pumpable Sealer</td>
</tr>
<tr>
<td>Hidden Sealer</td>
</tr>
<tr>
<td>Non Structural Expand Foam</td>
</tr>
</tbody>
</table>

The welded components are indicated by using the designations given in the illustration below: For example, “AB to AA” indicates that component “AB” and component “AA” shown in this illustration are welded together.

Part I.D.

1. **AB TO AA 5/SD S/WELD**
2. **AC TO AA 3/SD S/WELD**

Weld Attachment Location (AB TO AA)

5 Standard Spot Welds (5/SD S/WELD)

Part I.D. (AC TO AA)

AC = Fender Bracket

AA = Fender

Part Assembly I.D. (Part Number 9803)

Part I.D. (AB TO AA)

AB = Fender Bracket

AA = Fender

Weld Number I.D.

14 = Weld I.D.

R = right side
Explanation of Welding Abbreviations

Definitions

Weld Type
(ORD)=Ordinary Weld or Standard
(CRT)=Critical Weld or Diamond
(SAF)=Safety Weld
PROJ=Projection Weld
FCAW=Flex Core Arc Weld
MFG=Manufacturing Weld
S/WELD=Spot Welds
/SD=Per Side

Examples

AA TO AB 5/SD S/WELDS (ORD)=
PART AA WELDED TO PART AB 5 PER SIDE (5 RIGHT/5 LEFT) SPOT WELDS STANDARD

AA TO AB 12 PROJ WELDS (CRT)=
PART AA WELDED TO PART AB 12 PROJECTION WELDS CRITICAL OR DIAMOND

Adhesives

STRUCT ADH (ORD) = Ordinary Structural Adhesive
ADH (ORD) = Ordinary Adhesive
WELD LOCATION OVERVIEW ZONES

OVERVIEW 2

OVERVIEW 3

OVERVIEW 4

OVERVIEW 5
PARTS IDENTIFICATION LEGEND, OVERVIEW 2

AA REINF – TUNNEL –
AB REINF – HAND BRAKE MTG –
AC CROSSMEMBER – FRT FLOOR PAN FRT RT –
AC CROSSMEMBER – FRT FLOOR PAN FRT LT –
AD 05115421
AE CROSSMEMBER – TUNNEL FRT –
AF NUT/WELD.HEX – NIBS.NO.FIN. – DRIVE SHAFT TO CROSSMEMBER
AG HOOK – MUFLER HANGER BRACKET –
AH BRACKET – CONSOLE –
AJ NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – ESP MODULE TO TUNNEL REINF
AK STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO. FIN – PARK BRAKE LEVER TO TUNNEL REINF
AL NUT/WELD.HEX – NIBS.NO.FIN.PILET. PT – FUEL TUBE TO RAIL EXT
AM STUD.WELD/EXTERNAL – HEADER.PT.PNT. CUTTER.SPECIAL – WIRING TO SILL INR RT
AM STUD.WELD/EXTERNAL – HEADER.PT.PNT. CUTTER.SPECIAL – WIRING TO SILL INR LT
AN SILL – FRT FLOOR –
AN SILL – FRT FLOOR –
AP RAIL – TUNNEL FRT RT –
AP RAIL – TUNNEL FRT LT –
01 AB TO AA 10 S/WELDS (ORD)
02 AD TO AC 24 S/WELDS (ORD)
03 AF TO AE 1 PROJ WELD (ORD)
04 AG TO AE 2 ARC WELDS (ORD)
05 AH TO AA 13 S/WELDS (ORD)
06 AJ TO AA 4 PROJ WELDS (ORD)
07 AL TO AA 2 PROJ WELDS (ORD)
08 AK TO AB 2 PROJ WELDS (ORD)
09 AM TO AN 8 PROJ WELDS (ORD)
10 AF TO AD 1 PROJ WELD (ORD)
11 AR TO AP 8/SD S/WELDS (ORD)
12 AS TO AP 2 S/WELDS (ORD)
13 AT TO TP 1 PROJ WELD (ORD)
<table>
<thead>
<tr>
<th>Part Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>SIDEMEMBER – RR FLOOR UPR RT –</td>
</tr>
<tr>
<td>AA</td>
<td>SIDEMEMBER – RR FLOOR UPR LT –</td>
</tr>
<tr>
<td>AB</td>
<td>EXTENSION – RR FLOOR PAN RT –</td>
</tr>
<tr>
<td>AB</td>
<td>EXTENSION – RR FLOOR PAN LT –</td>
</tr>
<tr>
<td>AC</td>
<td>SIDEMEMBER – RR FLOOR LWR RT –</td>
</tr>
<tr>
<td>AC</td>
<td>SIDEMEMBER – RR FLOOR LWR LT –</td>
</tr>
<tr>
<td>AD</td>
<td>05115200AA/05115201AA – EXTENSION – RR FLOOR SIDEMEMBER – RT/LT</td>
</tr>
<tr>
<td>AE</td>
<td>SILL – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AE</td>
<td>SILL – RR FLOOR SIDEMEMBER LT –</td>
</tr>
<tr>
<td>AF</td>
<td>REINF – RR SPRING –</td>
</tr>
<tr>
<td>AF</td>
<td>REINF – RR SPRING –</td>
</tr>
<tr>
<td>AG</td>
<td>BRACKET – RR SPRING –</td>
</tr>
<tr>
<td>AG</td>
<td>BRACKET – RR SPRING –</td>
</tr>
<tr>
<td>AH</td>
<td>PANEL – RR SPRING –</td>
</tr>
<tr>
<td>AH</td>
<td>PANEL – RR SPRING –</td>
</tr>
<tr>
<td>AJ</td>
<td>05115204AA/05115205AA – SUPPORT ASSY – RR BUMPER RT/LT</td>
</tr>
<tr>
<td>AK</td>
<td>EXTENSION – RR FLOOR CROSSTMEMBER FRT RT –</td>
</tr>
<tr>
<td>AK</td>
<td>EXTENSION – RR FLOOR CROSSTMEMBER FRT LT –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM RT –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AM</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AM</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER LT –</td>
</tr>
<tr>
<td>AN</td>
<td>EXTENSION – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AN</td>
<td>EXTENSION – RR FLOOR SIDEMEMBER LT –</td>
</tr>
<tr>
<td>AP</td>
<td>REINF – RR FLOOR SIDEMEMBER EXTENSION RT –</td>
</tr>
<tr>
<td>AP</td>
<td>REINF – RR FLOOR SIDEMEMBER EXTENSION LT –</td>
</tr>
<tr>
<td>AR</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER EXTENSION RT –</td>
</tr>
<tr>
<td>AR</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER EXTENSION LT –</td>
</tr>
<tr>
<td>AS</td>
<td>REINF – MUFFLER HANGER BRACKET –</td>
</tr>
<tr>
<td>AT</td>
<td>BRACKET – PARKING BRAKE CABLE RR RT –</td>
</tr>
<tr>
<td>AT</td>
<td>BRACKET – PARKING BRAKE CABLE RR LT –</td>
</tr>
<tr>
<td>AU</td>
<td>BRACKET – RR BRAKE HOSE –</td>
</tr>
<tr>
<td>AU</td>
<td>BRACKET – RR BRAKE HOSE –</td>
</tr>
<tr>
<td>AV</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER RT – CENTER</td>
</tr>
<tr>
<td>AV</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER LT – CENTER</td>
</tr>
<tr>
<td>AW</td>
<td>BRACKET – RR SUSPENSION FRT –</td>
</tr>
<tr>
<td>AX</td>
<td>BRACKET – RR SUSPENSION RR RT –</td>
</tr>
<tr>
<td>AX</td>
<td>BRACKET – RR SUSPENSION RR LT –</td>
</tr>
<tr>
<td>AY</td>
<td>REINF – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AY</td>
<td>REINF – RR FLOOR SIDEMEMBER LT –</td>
</tr>
<tr>
<td>AZ</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER EXTENSION RT –</td>
</tr>
<tr>
<td>AZ</td>
<td>BULKHEAD – RR FLOOR SIDEMEMBER EXTENSION LT –</td>
</tr>
<tr>
<td>BA</td>
<td>NUT– PIPE – RR SUSPENSION TO BODY</td>
</tr>
<tr>
<td>BA</td>
<td>NUT– PIPE – RR SUSPENSION TO BODY</td>
</tr>
</tbody>
</table>

Back to Index
Parts Identification Legend, Overview 3

<table>
<thead>
<tr>
<th>Part Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>SideMember – RR Floor Upr RT –</td>
</tr>
<tr>
<td>AA</td>
<td>SideMember – RR Floor Upr LT –</td>
</tr>
<tr>
<td>AB</td>
<td>Extension – RR Floor Pan RT –</td>
</tr>
<tr>
<td>AB</td>
<td>Extension – RR Floor Pan LT –</td>
</tr>
<tr>
<td>AC</td>
<td>SideMember – RR Floor Lwr RT –</td>
</tr>
<tr>
<td>AC</td>
<td>SideMember – RR Floor Lwr LT –</td>
</tr>
<tr>
<td>AD</td>
<td>05115200AA/05115201AA – Extension – RR Floor SideMember – RT/LT</td>
</tr>
<tr>
<td>AE</td>
<td>Sill – RR Floor SideMember RT –</td>
</tr>
<tr>
<td>AE</td>
<td>Sill – RR Floor SideMember LT –</td>
</tr>
<tr>
<td>AF</td>
<td>Reinf – RR Spring –</td>
</tr>
<tr>
<td>AF</td>
<td>Reinf – RR Spring –</td>
</tr>
<tr>
<td>AG</td>
<td>Bracket – RR Spring –</td>
</tr>
<tr>
<td>AG</td>
<td>Bracket – RR Spring –</td>
</tr>
<tr>
<td>AH</td>
<td>Panel – RR Spring –</td>
</tr>
<tr>
<td>AH</td>
<td>Panel – RR Spring –</td>
</tr>
<tr>
<td>AJ</td>
<td>05115204AA/05115205AA – Support Assy – RR Bumper RT/LT</td>
</tr>
<tr>
<td>AK</td>
<td>Extension – RR Floor Crossmember FRT –</td>
</tr>
<tr>
<td>AK</td>
<td>Extension – RR Floor Crossmember FRT –</td>
</tr>
<tr>
<td>AS</td>
<td>Reinf – Muffler Hanger Bracket –</td>
</tr>
<tr>
<td>AT</td>
<td>Bracket – Parking Brake Cable RR RT –</td>
</tr>
<tr>
<td>AT</td>
<td>Bracket – Parking Brake Cable RR LT –</td>
</tr>
<tr>
<td>AU</td>
<td>Bracket – RR Brake Hose –</td>
</tr>
<tr>
<td>AU</td>
<td>Bracket – RR Brake Hose –</td>
</tr>
<tr>
<td>AV</td>
<td>Bulkhead – RR Floor SideMember RT –</td>
</tr>
<tr>
<td>AV</td>
<td>Bulkhead – RR Floor SideMember LT –</td>
</tr>
<tr>
<td>AW</td>
<td>Extension – RR Floor SideMember RT –</td>
</tr>
<tr>
<td>AX</td>
<td>Bracket – RR Suspension FRT –</td>
</tr>
<tr>
<td>AX</td>
<td>Bracket – RR Suspension RR RT –</td>
</tr>
<tr>
<td>AX</td>
<td>Bracket – RR Suspension RR LT –</td>
</tr>
<tr>
<td>AR</td>
<td>Reinf – RR Floor SideMember Ext RT –</td>
</tr>
<tr>
<td>AR</td>
<td>Reinf – RR Floor SideMember Ext LT –</td>
</tr>
<tr>
<td>AZ</td>
<td>Bulkhead – RR Floor SideMember Ext –</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
<tr>
<td>BA</td>
<td>Nut – Pipe – RR Suspension to Body</td>
</tr>
</tbody>
</table>
01 AH TO AG 5/SD S/WELD (CRT)
02 AH TO AF 2/SD S/WELD (CRT)
03 AH TO AG TO AF 2/SD S/WELD (CRT)
04 AG TO AF 2/SD S/WELD (ORD)
05 AJ TO AD 6 S/WELD (ORD)
06 AF TO AD 9 SD S/WELD (ORD)
19 AK TO AC 6R S/WELD (ORD)
20 AZ TO AC 3R S/WELD (ORD)
21 AX TO AG TO AC 2R S/WELD (CRT)
22 AX TO AC 5R S/WELD (CRT)
23 AZ TO AC TO AG 3R S/WELD (CRT)
24 AY TO AC 5R S/WELD (CRT)
25 AY TO AL 2R S/WELD (CRT)
26 AY TO AE TO AC 2R S/WELD (CRT)
27 AN TO AC 10R S/WELD (ORD)
28 AK TO AC TO AR 2R S/WELD (ORD)
29 AY TO AC TO AA 13R S/WELD (CRT)
30 AM TO AE 3R S/WELD (ORD)
31 AY TO AE TO AA 6R S/WELD (CRT)
32 AE TO AC TO AA 1R S/WELD (ORD)
33 AD TO AC 10R S/WELD (ORD)
34 AD TO AA 11R S/WELD (ORD)
35 AD TO AC TO AA 4R S/WELD (CRT)
36 AC TO AA 5R S/WELD (ORD)
37 AC TO AA 1R S/WELD (CRT)
38 AY TO AC TO AA 6R S/WELD (CRT)
39 AD TO AB 7R S/WELD (ORD)
40 AD TO AB TO AA 2R S/WELD (ORD)
41 AG TO AA 2R S/WELD (CRT)
42 AG TO AF TO AC 2R S/WELD (CRT)
43 AG TO AC TO AA 2R S/WELD (CRT)
44 AH TO AG TO AA 2R S/WELD (CRT)
45 AB TO AA 4R S/WELD (ORD)
46 AJ TO AD 6L S/WELD (ORD)
47 AP TO AD 6L S/WELD (ORD)
48 AD TO AA 11L S/WELD (ORD)
49 AR TO AJ TO AD 6L S/WELD (CRT)
56 AK TO AC 2L S/WELD (ORD)
57 AG TO AF TO AC 2L S/WELD (CRT)
58 AZ TO AC TO AG 3L S/WELD (CRT)
59 AZ TO AC 3L S/WELD (ORD)
60 AD TO AC 6L S/WELD (ORD)

Back to Index
61 AY TO AC 5L S/WELD (CRT)
62 AY TO AL 2L S/WELD (CRT)
63 AN TO AC 9L S/WELD (ORD)
64 AX TO AC 5L S/WELD (CRT)
65 AX TO AG TO AC 2L S/WELD (CRT)
66 AM TO AE 1L S/WELD (ORD)
67 AD TO AC TO AA 4L S/WELD (CRT)
68 AK TO AC TO AA 2L S/WELD (ORD)
69 AY TO AC TO AA 19L S/WELD (CRT)
70 AB TO AA 4L S/WELD (ORD)
71 AY TO AE TO AC 2L S/WELD (CRT)
72 AE TO AC TO AA 1L S/WELD (CRT)
73 AY TO AE TO AA 6L S/WELD (CRT)
74 AD TO AB 7L S/WELD (ORD)
75 AD TO AB TO AA 2L S/WELD (ORD)
76 AG TO AA 4L S/WELD (CRT)
77 AH TO AG TO AA 2L S/WELD (CRT)
78 AG TO AC TO AA 2L S/WELD (CRT)
79 AC TO AA 5L S/WELD (CRT)

View EX (left side only)
80 AE TO AC 1/SD FCAW (ORD)
81 AY TO AE 1/SD ADH BESAD (ORD)
82 AX TO AC 1/SD FCAW (CRT)
83 AX TO AC 1/SD FCAW (CRT)
84 BA TO AX 2/SD FCAW (CRT)

Back to Index
85 AG TO AC TO AA 1/SD ADH BEAD 9ORD)
86 AB TO AA 1/SD ADH BEAD (ORD)
87 AY TO AE TO AA 1/SD ADH BEAD (ORD)
88 BA TO AC 1/SD FCAW (CRT)
89 BA TO AC 1/SD FCAW (CRT)
90 AG TO AF TO AC 1/SD ADH BEAD (ORD)
DODGE CALIBER REAR FLOOR SECTION

<p>| AA | SIDEMEMBER – RR FLOOR LWR RT – |
| AA | SIDEMEMBER – RR FLOOR LWR LT – |
| AB | NUT – PIPE |
| AC | EXTENSION – RR FLOOR – |
| AD | SUPPORT – RR BUMPER RT – |
| AE | 06104968AA |
| AF | SPACER – RR FLOOR SIDEMEMBER EXTENSION – |
| AG | REINF – RR FLOOR SIDEMEMBER RT – |
| AH | STUD.WELD/INTERNAL – HEADER,PT.NIBS. NO.FIN – RR SEAT TO RAIL COVER |
| AJ | NUT WELD HEX – NIBS.NO.FIN – RR SEAT TO RAIL COVER |
| AK | NUT – PIPE – TRAILING ARM TO RAIL |
| AL | BRACKET – TRAILING ARM RT – |
| AM | BRACKET – PARKING BRAKE CABLE RR RT – |
| AN | NUT/WELD.HEX – NIBS.NO.FIN.PIOLT.PT – |
| AP | PANEL – RR WHEELHOUSE INR RT – |
| AQ | REINF – RR WHEELHOUSE RT – |
| AR | REINF – RR WHEELHOUSE LT – |
| AS | BRACKET – FILLER – |
| AT | PLATE – SIDE SILL RT – |
| AU | CROSSMEMBER – RR FLOOR FRT – |
| AV | BRACKET – FUEL TANK RR – |
| AW | BRACKET – RR SEAT – |
| AX | SHIELD – FUEL TANK – |
|AY | BRACKET – RR BRAKE HOSE – |
|AZ | BRACKET – RR SUSPENSION FRT – |
|BA | REINF – RR SEAT BELT – |
|BB | BULKHEAD – FRR FLOOR CROSSMEMBER FRT RT – |
|BC | CROSSMEMBER – RR FLOOR RR – |
|BD | REINF – SPARE TIRE HOLD-DOWN – |
|BE | TAPPING PLATE – |
|BF | EXTENSION – RR FLOOR – |
|BG | BRACKET – RR FLOOR EXTENSION SIDE RT – |
|BH | BRACKET – RR FLOOR EXTENSION SIDE LT – |
|BJ | CROSSMEMBER – RR SEAT – |
|BK | EXTENSION – SIDEMEMBER FRT FLOOR RT – |
|BL | STUD.WELD/INTERNAL – HEADER,PT.NIBS.NO.FIN – BRAKE LINE TO RH WHEELHOUSE ASSY |
|BM | BULKHEAD – CROSSMEMBER RR SEAT LT – |
|BN | NUT/WELD.HEX – NIBS.NO.FIN – FUEL TANK TO RR SEAT X-MBR – |
|BP | REINF – RR CLOSURE – RR END REINF |
|BR | PANEL – RR CLOSURE – RR END CLOSURE |
|BS | REINF – LIFTGATE STRIKER – |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>CROSSMEMBER – RR FLOOR RR –</td>
</tr>
<tr>
<td>BD</td>
<td>REINF – SPARE TIRE HOLD-DOWN –</td>
</tr>
<tr>
<td>BE</td>
<td>TAPPING PLATE –</td>
</tr>
<tr>
<td>BF</td>
<td>EXTENSION – RR FLOOR –</td>
</tr>
<tr>
<td>BG</td>
<td>BRACKET – RR FLOOR EXTENSION SIDE RT –</td>
</tr>
<tr>
<td>BH</td>
<td>BRACKET – RR FLOOR EXTENSION CTR RT –</td>
</tr>
<tr>
<td>BJ</td>
<td>CROSSMEMBER – RR SEAT –</td>
</tr>
<tr>
<td>BK</td>
<td>EXTENSION – SIDEMEMBER FRT FLOOR RT –</td>
</tr>
<tr>
<td>BK</td>
<td>BULKHEAD – CROSSMEMBER RR SEAT LT –</td>
</tr>
<tr>
<td>BL</td>
<td>STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM RT –</td>
</tr>
<tr>
<td>AM</td>
<td>BRACKET – PARKING BRAKE CABLE RR RT –</td>
</tr>
<tr>
<td>AH</td>
<td>STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN –</td>
</tr>
<tr>
<td>AJ</td>
<td>NUT WELD HEX – NIBS.NO.FIN – RR SEAT TO RAIL COVER</td>
</tr>
<tr>
<td>AK</td>
<td>NUT – PIPE – TRAILING ARM TO RAIL –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AA</td>
<td>SIDEMEMBER – RR FLOOR LWR RT –</td>
</tr>
<tr>
<td>AB</td>
<td>NUT – PIPE –</td>
</tr>
<tr>
<td>AC</td>
<td>EXTENSION – RR FLOOR –</td>
</tr>
<tr>
<td>AD</td>
<td>SUPPORT – RR BUMPER RT –</td>
</tr>
<tr>
<td>AE</td>
<td>06104968AA –</td>
</tr>
<tr>
<td>AF</td>
<td>SPACER – RR FLOOR SIDEMEMBER EXTENSION –</td>
</tr>
<tr>
<td>AG</td>
<td>REINF – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AH</td>
<td>STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN –</td>
</tr>
<tr>
<td>AJ</td>
<td>NUT WELD HEX – NIBS.NO.FIN – RR SEAT TO RAIL COVER</td>
</tr>
<tr>
<td>AK</td>
<td>NUT – PIPE – TRAILING ARM TO RAIL –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AM</td>
<td>BRACKET – PARKING BRAKE CABLE RR RT –</td>
</tr>
<tr>
<td>AN</td>
<td>NUT/WELD.HEX – NIBS.NO.FIN.PIOLT.PT –</td>
</tr>
<tr>
<td>AP</td>
<td>PANEL – RR WHEELHOUSE INR RT –</td>
</tr>
<tr>
<td>AR</td>
<td>REINF – RR WHEELHOUSE RT –</td>
</tr>
<tr>
<td>AS</td>
<td>BRACKET – FILLER –</td>
</tr>
<tr>
<td>AT</td>
<td>PLATE – SIDE SILL RT –</td>
</tr>
<tr>
<td>AU</td>
<td>CROSSMEMBER – RR FLOOR FRT –</td>
</tr>
<tr>
<td>AW</td>
<td>BRACKET – RR SEAT –</td>
</tr>
<tr>
<td>AX</td>
<td>SHIELD – FUEL TANK –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AA</td>
<td>SIDEMEMBER – RR FLOOR LWR LT –</td>
</tr>
<tr>
<td>AB</td>
<td>NUT – PIPE –</td>
</tr>
<tr>
<td>AC</td>
<td>EXTENSION – RR FLOOR –</td>
</tr>
<tr>
<td>AD</td>
<td>SUPPORT – RR BUMPER LT –</td>
</tr>
<tr>
<td>AE</td>
<td>06104968AA –</td>
</tr>
<tr>
<td>AF</td>
<td>SPACER – RR FLOOR SIDEMEMBER EXTENSION –</td>
</tr>
<tr>
<td>AG</td>
<td>REINF – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AG</td>
<td>REINF – RR FLOOR SIDEMEMBER LT –</td>
</tr>
<tr>
<td>AH</td>
<td>STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN –</td>
</tr>
<tr>
<td>AJ</td>
<td>NUT WELD HEX – NIBS.NO.FIN – RR SEAT TO RAIL COVER</td>
</tr>
<tr>
<td>AK</td>
<td>NUT – PIPE – TRAILING ARM TO RAIL –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AM</td>
<td>BRACKET – PARKING BRAKE CABLE RR RT –</td>
</tr>
<tr>
<td>AN</td>
<td>NUT/WELD.HEX – NIBS.NO.FIN.PIOLT.PT –</td>
</tr>
<tr>
<td>AP</td>
<td>PANEL – RR WHEELHOUSE INR LT –</td>
</tr>
<tr>
<td>AR</td>
<td>REINF – RR WHEELHOUSE LT –</td>
</tr>
<tr>
<td>AS</td>
<td>BRACKET – FILLER –</td>
</tr>
<tr>
<td>AT</td>
<td>PLATE – SIDE SILL LT –</td>
</tr>
<tr>
<td>AU</td>
<td>CROSSMEMBER – RR FLOOR FRT –</td>
</tr>
<tr>
<td>AW</td>
<td>BRACKET – RR SEAT –</td>
</tr>
<tr>
<td>AX</td>
<td>SHIELD – FUEL TANK –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AA</td>
<td>SIDEMEMBER – RR FLOOR LWR RT –</td>
</tr>
<tr>
<td>AB</td>
<td>NUT – PIPE –</td>
</tr>
<tr>
<td>AC</td>
<td>EXTENSION – RR FLOOR –</td>
</tr>
<tr>
<td>AD</td>
<td>SUPPORT – RR BUMPER RT –</td>
</tr>
<tr>
<td>AE</td>
<td>06104968AA –</td>
</tr>
<tr>
<td>AF</td>
<td>SPACER – RR FLOOR SIDEMEMBER EXTENSION –</td>
</tr>
<tr>
<td>AG</td>
<td>REINF – RR FLOOR SIDEMEMBER RT –</td>
</tr>
<tr>
<td>AH</td>
<td>STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN –</td>
</tr>
<tr>
<td>AJ</td>
<td>NUT WELD HEX – NIBS.NO.FIN – RR SEAT TO RAIL COVER</td>
</tr>
<tr>
<td>AK</td>
<td>NUT – PIPE – TRAILING ARM TO RAIL –</td>
</tr>
<tr>
<td>AL</td>
<td>BRACKET – TRAILING ARM LT –</td>
</tr>
<tr>
<td>AM</td>
<td>BRACKET – PARKING BRAKE CABLE RR RT –</td>
</tr>
</tbody>
</table>
20 AV TO AU 7/SD S/WELDS (SAF)
21 BB TO AU 12 S/WELDS (ORD)
22 BK TO BJ 3/SD ARC WELDS (SAF)
23 BJ TO BK 8/SD S/WELDS (SAF)
24 BL TO BJ 12 S/WELDS (SAF)
25 BN TO BM 1/SD PROJ WELD (ORD)
26 BM TO BJ 3/SD S/WELDS (CRT)
27 BM TO BK TO BJ 1/SD S/WELDS (CRT)
28 BK TO BJ 3/SD S/WELDS (ORD)
29 BK TO BK 4/SD S/WELDS (ORD)
30 BN TO BJ 1/SD PROJ WELD (ORD)
31 BS TO BR 12 S/WELDS (ORD)
32 BP TO BS TO BR 6 S/WELDS (ORD)
33 BP TP BR 30 S/WELDS (ORD)
01 AD TO AB TO AA 4R S/WELDS (ORD)
02 AC TO AB TO 2R FCAW (ORD)
03 AC TO AB TO AA 3R S/WELDS (ORD)
04 AB TO AA 16R S/WELDS (ORD)
05 AB TO AA 2R FCAW (ORD)
06 AE TO AB TO AA 5R S/WELDS (ORD)
07 AF TO AB 1R FCAW (ORD)
24 AG TO AA 8L S/WELDS (ORD)
25 AH TO AG TO AA 4L S/WELDS (ORD)
26 AH TO AB 3L S/WELDS (ORD)
27 AH TO AB TO AA 2L S/WELDS (ORD)
28 AJ TO AB 1L S/WELD (ORD)
29 AJ TO AB TO AA 1L S/WELD (ORD)
30 AJ TO AG TO AA 1L S/WELD (ORD)
31 AG TO AB 1L FCAW (ORD)
32 AH TO AG TO AB 4L S/WELDS (ORD)
41 AK TO AA 3L PROJ WELDS (ORD)
42 AP TO AA 1L PROJ WELD (ORD)
43 AN TO AA 4L FCAW (ORD)
44 AM TO AA 2L PROJ WELDS (ORD)
45 AJ TO AA 3L S/WELDS (ORD)
46 AC TO AJ TO AA 4L S/WELDS (ORD)
47 AE TO AA 3L S/WELDS (ORD)
48 AE TO AD TO AA 4L S/WELDS (ORD)
49 AF TO AC TO AA S/WELDS (CRT)
50 AC TO AA 7/SD S/WELDS (ORD)
51 AS TO AA 4/SD S/WELDS (ORD)
52 AR TO AC 2/SD FCAW (CRT)
53 AK TO AJ 2R PROJ WELDS (ORD)
54 AM TO AD 2R/2L PROJ WELDS (ORD)
55 AF TO AF 6/SD S/WELDS (ORD)
56 AR TO AF 1/SD PROJ WELDS (SAF)
57 AT TO AB 2/SD S/WELDS (ORD)
58 AK TO AB 5R/4L PROJ WELDS (ORD)
59 AR TO AH 1R/1L PROJ WELDS (SAF)
60 AU TO AH 8R/8L S/WELDS (ORD)
61 AK TO AS 4/SD PROJ WELDS (ORD)
62 AW TO AV 2/SD FCAW (ORD)
63 AX TO AV TO AG 2/SD S/WELDS (ORD)
64 AH TO AG 1/SD S/WELDS (ORD)
65 AH TO AV TO AG 1/SD S/WELDS (ORD)
66 AV TO AG 27/SD S/WELDS (ORD)
67 AX TO AW TO AG 2/SD A/WELDS (ORD)
68 AY TO AH TO AG 2/SD S/WELDS (CRT)
69 AH TO AG 1/SD S/WELDS (CRT)
70 AW TO AH TO AG 1/SD S/WELDS (ORD)
71 AX TO AG 3/SD S/WELDS (ORD)
72 AW TO AG 4/SD S/WELDS (ORD)
73 AY TO AH TO AG 2/SD S/WELDS (ORD)
74 AW TO AG 3/SD S/WELDS (ORD)
75 AH TO AG 4/SD S/WELDS (ORD)
76 AW TO AH TO AG 2/SD S/WELDS (ORD)
77 AR TO AY 1/SD FCAW (CRT)
78 AY TO AG 3/SD FCAW (ORD)
HEMI.com, the official DaimlerChrysler HEMI® Web site.
Learn about the history of the early HEMI®, built by
Chrysler, DeSoto, and Dodge. Get all the details on the 426
HEMI on the street and in race cars, from NASCAR stock
cars at Daytona and Darlington, to NHRA Super Stock,
Funny Cars, and Top Fuel dragsters. Meet the engineers
who designed the original HEMI, the 426 HEMI and the
new 5.7 HEMI. Learn how Don Garlits and other legendary
racers adopted the 331, 354, 392, and finally the 426 Hemi
as they set records year after year.
WELD LOCATION OVERVIEW ZONES

OVERVIEW 6

OVERVIEW 7

OVERVIEW 8

OVERVIEW 9
DODGE CALIBER PLENUM ASSEMBLY SECTION

AA PANEL – COWL TOP INNER – COWL TOP, INR
AB PANEL – COWL SIDE UPPER – COWL TOP, UPR
AC BRACKET – VIN PLATE ATTACH –
AD REINF – BRAKE PEDAL –
AE 05074690AA – BULKHEAD – FRAME
AF PANEL – COWL TOP LOWER – COWL TOP, LWR
AG BRACKET – WINDSHIELD –
AH BRACKET – WIPER –
AJ BRACKET – COWL PLENUM –
AK BULKHEAD – COWL CTR – UPR FRAME RR
AL BRACKET – WIPER – WIPER, CTR
<table>
<thead>
<tr>
<th>Part Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Panel – Cowl Top Inner – Cowl Top, INR</td>
</tr>
<tr>
<td>AB</td>
<td>Panel – Cowl Side Upper – Cowl Top, UPR</td>
</tr>
<tr>
<td>AC</td>
<td>Bracket – Vin Plate Attach –</td>
</tr>
<tr>
<td>AD</td>
<td>Reinforced – Brake Pedal –</td>
</tr>
<tr>
<td>AE</td>
<td>05074690AA – Bulkhead – Frame</td>
</tr>
<tr>
<td>AF</td>
<td>Panel – Cowl Top Lower – Cowl Top, LWR</td>
</tr>
<tr>
<td>AG</td>
<td>Bracket – Windshield –</td>
</tr>
<tr>
<td>AH</td>
<td>Bracket – Wiper –</td>
</tr>
<tr>
<td>AJ</td>
<td>Bracket – Cowl Plenum –</td>
</tr>
<tr>
<td>AK</td>
<td>Bulkhead – Cowl CTR – UPR Frame RR</td>
</tr>
<tr>
<td>AL</td>
<td>Bracket – Wiper – CTR – Wiper, CTR</td>
</tr>
</tbody>
</table>
01 AC TO AB 2 S/WELDS (ORD)
02 AD TO AD 2 S/WELDS (ORD)
03 AD TO AA 2 S/WELDS (ORD)
07 AF TO AB 4 S/WELDS (ORD)
08 AG TO AB 4 S/WELDS (ORD)
09 AH TO AB 3 S/WELDS (ORD)
10 AF TO AB TO AA 23 S/WELDS (ORD)
11 AJ TO AF 2 S/WELDS (ORD)
12 AK TO AB 3 S/WELDS (ORD)
13 AL TO AF 5 S/WELDS (ORD)
14 AJ TO AK TO AB 2 S/WELDS (ORD)
15 AK TO AA 1 STRUC ADH (ORD)
16 AK TO AA 1 STRUC ADH (ORD)
17 AK TO AA 1 STRUC ADH (ORD)
18 AK TO AA 1 STRUC ADH (ORD)
19 AK TO AA 2 STRUC ADH (ORD)
DODGE CALIBER DASH ASSEMBLY SECTION

AA PANEL – DASH –
AB CROSSMEMBER – DASH –
AC REINF – DASH PANEL –
AD STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN
 – CLUTCH & CVT MOD TO DASH
AE SPACER – WELD –
AF CROSSMEMBER – DASH –
PARTS IDENTIFICATION LEGEND, OVERVIEW 7

AA PANEL – DASH –
AB CROSSMEMBER – DASH –
AC REINF – DASH PANEL –
AD STUD.WELD/INTERNAL – HEADER.PT.NIBS.NO.FIN
 – CLUTCH & CVT MOD TO DASH
AE SPACER – WELD –
AF CROSSMEMBER – DASH –
01 AB TO AA 10 S/WELDS (ORD)
02 AC TO AA 11 S/WELDS (ORD)
03 AE TO AC 4 PROJ WELDS (ORD)
04 AD TO AA 7 PROJ WELDS (ORD)
05 AF TO AA 10 S/WELDS (ORD)
<table>
<thead>
<tr>
<th>AA</th>
<th>BAR – HEADLAMP RT –</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>BRACKET – FRT FENDER OTR LT –</td>
</tr>
<tr>
<td>AC</td>
<td>GUSSET – PANEL RT –</td>
</tr>
<tr>
<td>AD</td>
<td>GUSSET – CROSSMEMBER – FRT LWR –</td>
</tr>
<tr>
<td>AE</td>
<td>CROSSMEMBER – FRT UPR –</td>
</tr>
<tr>
<td>AF</td>
<td>CROSSMEMBER – FRT LWR –</td>
</tr>
<tr>
<td>AG</td>
<td>REINF – CROSSMEMBER –</td>
</tr>
<tr>
<td>AH</td>
<td>NUT – PIPE – F/A MEMBER MOUNTING</td>
</tr>
<tr>
<td>AJ</td>
<td>BRACKET – RADIATOR SUPPORT LWR –</td>
</tr>
<tr>
<td>AL</td>
<td>PANEL – SHOCK TOWER MOUNTING FRT RT –</td>
</tr>
<tr>
<td>AM</td>
<td>PANEL – FRT FENDER SHIELD RT –</td>
</tr>
<tr>
<td>AN</td>
<td>GUSSET – FRT SUSPENSION ISOLATOR STRUT MOUNTING LT –</td>
</tr>
<tr>
<td>AP</td>
<td>REINF – FRT SUSPENSION ISOLATOR STRUT MOUNTING LT –</td>
</tr>
</tbody>
</table>

AR	REINF – SHOCK TOWER MOUNTING FRT RT –
AT	GUSSET – ENGINE MOUNT –
AU	BRACKET – FRT ENGINE MOUNT ATTACH –
AV	GUSSET – TRANSMISSION –
AW	REINF – SHIPPING TIE DOWN FRT –
AX	BRACKET – SHIPPING TIE DOWN FRT –
AY	NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – FRT WIPER MODULE TO PLENUM ASSY
AZ	BRACKET – WIPER –
BA	SILL – FRT FLOOR –
BB	STUD.WELD/EXTERNAL – HEADER.PT.PNT.CUTTER. SPECIAL – FRT FLR PAN FRT H/SHLD TO FLR PAN
BC	SPACER – WELD –
BD	REINF – DASH PANEL –
BE	EXTENSION – DASH –
BF	BRACKET – BRAKE LINE –
BG	CROSSMEMBER – DASH –
BH	CROSSMEMBER – DASH –
BJ	EXTENSION – RAIL FRT RT –
BK	EXTENSION – RAIL FRT LT –
BL	BULKHEAD – CROSSMEMBER –
BM	NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – BATTERY HOLD DOWN
BN	BRACKET – BATTERY HOLD DOWN –
BP	BRACKET ASSY – ACCELERATOR PEDAL –
BQ	NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – CANISTER TO DASH
BR	NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – I/P TO COWL SIDE REINF
BS	REINF – I/P –
BT	NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – FRT WIPER MODULE TO PLENUM ASSY
BU	BRACKET – COWL PLENUM –
01 AB TO AA 1/SD S/WELDS (ORD)
02 AC TO AA 2/SD S/WELDS (ORD)
03 AH TO AB 1/S S/WELD (ORD)
04 AE TO AD 8/SD S/WELDS (ORD)
05 AF TO AE 22/SD S/WELDS (ORD)
06 AG TO AE 8/S S/WELDS (ORD)
07 AH TO AG 4/S FCAW
08 AJ TO AE 4/SD S/WELDS (ORD)
09 AF TO AE 17/S S/WELDS (ORD)
10 BV TO AE 1/S S/WELD (ORD)
11 AM TO AG 1/S S/WELD (ORD)
12 AP TO AN TO AL 1/S S/WELD (CRT)
13 AH TO AG 20/SD S/WELDS (CRT)
14 AM TO AL 8/RT 7/LT S/WELDS (ORD)
15 AR TO AL 5/SD S/WELDS (ORD)
16 AS TO AP 2/S S/WELDS (ORD)
17 AM TO AT 1/S S/WELD (ORD)
18 AU TO AT TO AM 4/S S/WELDS (ORD)
19 AU TO AM 3/S S/WELDS (ORD)
20 AT TO AM 8/S S/WELDS (ORD)
21 AV TO AM 7/S S/WELDS (ORD)
22 AR TO AL 2/S S/WELDS (ORD)
23 AW TO AF TO AE 4/SD S/WELDS (ORD)
24 AZ TO AY 1/S WELD (ORD)
25 AX TO AW 2/SD S/WELDS (ORD)
26 AW TO AE 3/SD S/WELDS (ORD)
27 AX TO AE 3/SD S/WELDS (ORD)
28 AX TO AF TO AE 4/SD S/WELDS (ORD)
29 BD TO BC 4/S S/WELDS (ORD)
30 BF TO BE 6/S S/WELDS (ORD)
31 BG TO BF TO BE 2/S S/WELDS (ORD)
32 BG TO BF 1/S S/WELD (ORD)
33 BB TO BA 4/SD S/WELDS (ORD)
34 BL TO BH 2/SD S/WELDS (ORD)
35 BK TO BH 8/S S/WELDS (ORD)
36 BJ TO BH 6/S S/WELDS (ORD)
37 BN TO BM 2/S S/WELDS (ORD)
38 BQ TO BP 2/S S/WELDS (ORD)
39 BS TO BR 2/S S/WELDS (ORD)
40 BU TO BT 2/S S/WELDS (ORD)
AA 05074076AA REINF-W/SHLD FRM INR LWR & FRT DR
AB NUT/WELD.HEX – NIBS.NO.FIN – UPR DR HINGE TO BODY
AC REINF ASSY – BODY FRT HINGE PILLAR LWR RT –
AD REINF ASSY – BODY FRT HINGE PILLAR LWR LT –
AE 06104983AA NUT/WELD.SQ – NIBS.NO.FIN.SQUARE –
AF 05074804AA BEAM – UPR LOAD PATH OTR RT –
AG REINF ASSY – QTR INR D-PILLAR TURNING LOOP –
AH REINF – RETRACTOR D-PILLAR – HINGE TO BODY
AJ REINF – QTR INR D-PILLAR TURNING LOOP –
AK NUT/WELD/HEX – NIBS.NO.FIN.PILOT.PT – W/HOUSE INR REINF TO QTR INR B/LINE
AL REINF – QTR INR BELTLINE RT –
AM TAPPING PLATE – C-PILLAR SEAT BELT D-LOOP MOUNTING –
AN REINF – RETRACTOR C-PILLAR –
AP NUT/WELD.HEX – NIBS.NO.FIN.PILOT.PT – D-PILLAR TURN LOOP TO BSA INR
AR RAIL – ROOF SIDE INR RT –
AR RAIL – ROOF SIDE INR LT –
AS REINF – GRAB HANDLE MOUNTING –
AT REINF – BODY CTR PILLAR INR RT –
AT REINF – BODY CTR PILLAR INR LT –
AU REINF – BODY CTR PILLAR INR LWR RT –
AU REINF – BODY CTR PILLAR INR LWR LT –
AV NUT/WELD.HEX – NIBS.NO.FIN – LWR DOOR HINGE TO BODY
AV NUT/WELD.HEX – NIBS.NO.FIN – LWR DOOR HINGE TO BODY

Back to Index
WELD LAYOUT LOCATION GUIDE
09 AS TO AR 6/SD S/WELDS (ORD)
10 AV TO AT 4 PROJ WELDS (ORD)
11 AU TO AT 14R/15L S/WELDS (ORD)
DODGE CALIBER HOOD AND FRONT FENDERS SECTION

AA PANEL – FRONT FENDER RT –
AA PANEL – FRONT FENDER LT –
AB PANEL – FRT FENDER HEADLAMP CLOSURE RT –
AB PANEL – FRT FENDER HEADLAMP CLOSURE LT –
AC PANEL – HOOD INR –

AD 05074287AA REINF – HOOD INR PANEL LATCH –
AE PANEL – HOOD LATCH –
AF REINF – HOOD INR PANEL HINGE –
AG PANEL – HOOD OTR –

Back to Index
PARTS IDENTIFICATION LEGEND, OVERVIEW 11

AA PANEL – FRONT FENDER RT –
AA PANEL – FRONT FENDER LT –
AB PANEL – FRT FENDER HEADLAMP CLOSURE RT –
AB PANEL – FRT FENDER HEADLAMP CLOSURE LT –
AC PANEL – HOOD INR –

AD 05074287AA REINF – HOOD INR PANEL LATCH –
AE PANEL – HOOD LATCH –
AF REINF – HOOD INR PANEL HINGE –
AG PANEL – HOOD OTR –
02 AD TO AC 14 S/WELDS (ORD)
03 AE TO AD TO AC 9 S/WELDS (ORD)
04 AF TO AC 6 S/WELDS (ORD)
05 AE TO AC 4 S/WELDS (ORD)
DODGE CALIBER FRONT DOOR SECTION

AA PANEL – FRT DOOR INR RT –
AA PANEL – FRT DOOR INR LT
AB CHANNEL – FRT DOOR GLASS RUN RT –
AB CHANNEL – FRT DOOR GLASS RUN LT –
AC REINF – FRT DOOR LATCH RT –
AC REINF – FRT DOOR LATCH LT –
AD BEAM ASSY – IMPACT DOOR FRT –
AE PANEL – FRT DOOR OTR RT –
AE PANEL – FRT DOOR OTR LT –
AE PANEL – FRT DOOR OTR LT –
AF STUD PLATE ASSY – FRT DOOR TO HINGE –
AF STUD PLATE ASSY – FRT DOOR TO HINGE –
AG REINF – FRT DOOR OTR BELT RT –
AG REINF – FRT DOOR OTR BELT LT –
AG REINF – FRT DOOR OTR BELT LT –
Back to Index
Parts Identification Legend, Overview 12

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Panel – FRT Door INR RT –</td>
</tr>
<tr>
<td>AA</td>
<td>Panel – FRT Door INR LT</td>
</tr>
<tr>
<td>AB</td>
<td>Channel – FRT Door Glass Run RT –</td>
</tr>
<tr>
<td>AB</td>
<td>Channel – FRT Door Glass Run LT –</td>
</tr>
<tr>
<td>AC</td>
<td>Reinforcement – FRT Door Latch RT –</td>
</tr>
<tr>
<td>AC</td>
<td>Reinforcement – FRT Door Latch LT –</td>
</tr>
<tr>
<td>AD</td>
<td>Beam Assy – Impact Door FRT –</td>
</tr>
<tr>
<td>AE</td>
<td>Panel – FRT Door OTR RT –</td>
</tr>
<tr>
<td>AE</td>
<td>Panel – FRT Door OTR LT –</td>
</tr>
<tr>
<td>AF</td>
<td>Stud Plate Assy – FRT Door to Hinge –</td>
</tr>
<tr>
<td>AG</td>
<td>Reinforcement – FRT Door OTR Belt RT –</td>
</tr>
<tr>
<td>AG</td>
<td>Reinforcement – FRT Door OTR Belt LT –</td>
</tr>
</tbody>
</table>
06 AE TO AD 4/SD GUM DROPS
07 AE TO AA 1/SD STRUC ADH
08 AF TO AA A/SD S/WELDS (ORD)
DODGE CALIBER REAR DOOR SECTION

AA PANEL – RR DOOR OTR RT –
AA PANEL – FRT DOOR OTR LT –
AB PANEL – RR DOOR INR RT –
AB PANEL – FRT DOOR INR LT –
AC REINF – RR DOOR OTR BELT RT –
AC REINF – RR DOOR OTR BELT LT –
AD BEAM – IMPACT RR DOOR RT –
AD BEAM – IMPACT RR DOOR LT –
AE BRACKET – GLASS CHANEL MOUNTING RR RT –
AE BRACKET – GLASS CHANEL MOUNTING RR LT –
AF CHANNEL – RR DOOR GLASS RUN RT –
AF CHANNEL – RR DOOR GLASS RUN LT –
AG REINF – RR DOOR LATCH RT –
AG REINF – RR DOOR LATCH LT –
AH STUD PLATE – DOOR HINGE –
AJ STUD PLATE – DOOR HINGE MTG STUD –
AK BRACKET – REINF OTR BELT RR DR FRT RT –
AK BRACKET – REINF OTR BELT RR DR FRT LT –
AL BRACKET – REINF OTR BELT RR DR RR RT –
AL BRACKET – REINF OTR BELT RR DR RR LT –

Back to Index
PARTS IDENTIFICATION LEGEND, OVERVIEW 13

AA PANEL – RR DOOR OTR RT –
AA PANEL – FRT DOOR OTR LT –
AB PANEL – RR DOOR INR RT –
AB PANEL – FRT DOOR INR LT –
AC REINF – RR DOOR OTR BELT RT –
AC REINF – RR DOOR OTR BELT LT –
AD BEAM – IMPACT RR DOOR RT –
AD BEAM – IMPACT RR DOOR LT –
AE BRACKET – GLASS CHANEL MOUNTING RR RT –
AE BRACKET – GLASS CHANEL MOUNTING RR LT –
AF CHANNEL – RR DOOR GLASS RUN RT –
AF CHANNEL – RR DOOR GLASS RUN LT –
AG REINF – RR DOOR LATCH RT –
AG REINF – RR DOOR LATCH LT –
AH STUD PLATE – DOOR HINGE –
AJ STUD PLATE – DOOR HINGE MTG STUD –
AK BRACKET – REINF OTR BELT RR DR FRT RT –
AK BRACKET – REINF OTR BELT RR DR FRT LT –
AL BRACKET – REINF OTR BELT RR DR RR RT –
AL BRACKET – REINF OTR BELT RR DR RR LT –

Back to Index
WELD LAYOUT LOCATION GUIDE
06 AD TO AB 8/SD S/WELDS (SAF)
07 AG TO AB 6/SD S/WELDS (CRT)
08 AL TO AB 3/SD S/WELDS (ORD)
11 AC TO AA 1/SD STRUC ADH
12 AC TO AA 5/SD STRUC ADH
13 AD TO AA 3/SD GUM DROP
DODGE CALIBER LIFTGATE SECTION

AA PANEL – LIFTGATE INR –
AB PANEL – LIFTGATE OTR –
AC REINF – LATCH MOUNT LIFT GATE –
AD HINGE ASSY – LIFTGATE –
AE TAPPING PLATE

Back to Index
PARTS IDENTIFICATION LEGEND, OVERVIEW 14

AA PANEL – LIFTGATE INR –
AB PANEL – LIFTGATE OTR –
AC REINF – LATCH MOUNT LIFT GATE –
AD HINGE ASSY – LIFTGATE –
AE TAPPING PLATE
teamPSE FACILITY PLANNING SERVICES

We can design a body shop that optimizes service efficiency and maximizes profitability. teamPSE Facility Planning Services makes the difference!

Contact teamPSE for your Body Shop needs — 1.800.223.5623 or teamPSE eStore on DealerCONNECT (located under the eStoreMarketCenter tab)
WELD LOCATION OVERVIEW ZONES

OVERVIEW 16

OVERVIEW 17

OVERVIEW 18

OVERVIEW 19

OVERVIEW 20

OVERVIEW 21
PARTS IDENTIFICATION LEGEND, OVERVIEW 16

AA PANEL – FRT FENDER SHIELD RT –
AA SHIELD – FRT FENDER SIDE SHIELD LT –
AB BAR – HEADLAMP RT –
AB BAR – HEADLAMP LT –
AC 05115032AA 05115033AA
AD 05115684AA 05115685AA
AE PANEL – SHOCK TOWER MOUNTING FRT RT –
AE PANEL – SHOCK TOWER MOUNTING FRT LT –
AF BRACKET – POWER STEERING RESERVOIR –
AG GUSSET – ENGINE MOUNT –
AH GUSSET – FRT SUSPENSION ISOLATOR STRUT MOUNTING RT –
AH GUSSET – FRT SUSPENSION ISOLATOR STRUT MOUNTING LT –
AJ REINF – FRT SIDE RAIL BUMPER MOUNTING RT –
AJ REINF – FRT SIDE RAIL BUMPER MOUNTING LT –
AK PANEL – FRT RAIL CAP RT –
AK PANEL – FRT RAIL CAP LT –
AL EXTENSION – DASH LWR –
AM BULKHEAD – CROSSMEMBER –
AN CROSSMEMBER – DASH –
AP BRACKET – FRT ENGINE MOUNT –
AR PANEL – SIDE FRT RAIL QTR RT –
AR PANEL – SIDE FRT RAIL QTR LT –
AS PANEL – FRT SIDE RAIL INR RT –
AS PANEL – FRT SIDE RAIL INR LT –
AT SHIELD – FRT FENDER SIDE SHIELD LT –
AU GUSSET – TRANSMISSION –
AV REINF – SHOCK TOWER MOUNTING FRT RT –
AV REINF – SHOCK TOWER MOUNTING FRT LT –
AW PANEL – SIDE FRT RAIL OTR RT –
AW PANEL – SIDE FRT RAIL OTR LT –
AX REINF – FRT FLOOR RT –
AX REINF – FRT FLOOR LT –
AY SIDEMEMBER – FRT FLOOR –
AZ PANEL – EXTENSION FRT RAIL INR RT –
AZ PANEL – EXTENSION FRT RAIL INR LT –
BA GUSSET – CROSSMEMBER FRT LWR –
BB BAR – HEADLAMP RT –
BB BAR – HEADLAMP LT –
BC GUSSET – PANEL RT –
BC GUSSET – PANEL LT –
BD 05115406AA
BE CROSSMEMBER – FRT LWR –
BF PANEL – SHOCK TOWER MOUNTING FRT LT –
BF REINF – SHOCK TOWER MOUNTING FRT RT –
BG STUD.WELD/EXTERNAL – HEADER,PT.NO.FIN. SPECIAL – ELECTRICAL GROUND TO BODY
BH STUD.WELD/EXTERNAL – PNT.CUTTER.PILOT. PT.SPECIAL – ELECT.WIRING BUNDLE TO BODY
BJ BEAM – LOAD PATH INR UPR RT –
BJ BEAM – LOAD PATH INR UPR LT –
BK BRACKET – FENDER MIDPOINT MTG RT –
BK BRACKET – FENDER MIDPOINT MTG LT –
BM REINF – TAPPING PLATE –
01 AE TO AC TO AA 1 SD S/WELDS (ORD)
02 AC TO AA 6 SD S/WELDS (ORD)
03 AC TO AB 2 SD S/WELD (ORD)
04 AD TO AC 8 SD S/WELD (ORD)
05 AF TO AE TO AD 3 S/WELD (CRT)
06 AG TO AC 4 S/WELD (ORD)
07 AJ TO AC 6 SD S/WELDS (ORD)
08 AK TO AJ 3 SD S/WELDS (ORD)
53 AH TO AE TO AC 1 SD S/WELDS (ORD)
09 AN TO AM TO AL 4 SD S/WELDS (ORD)
10 AP TO AG TO AA 3 S/WELDS (ORD)
11 AS TO AR TO AA 1 S/WELD (ORD)
12 AP TO AE 1 S/WELD (ORD)
13 AP TO AE TO AA 1 S/WELD (ORD)
14 AP TO AG TO AA 1 S/WELD (ORD)
15 AU TO AT TO AP 3 S/WELDS (ORD)
16 AT TO AP TO AE 1 S/WELD (ORD)
17 AP TO AE 2 S/WELDS (ORD)
18 AR TO AE 2 SD S/WELDS (ORD)
19 AW TO AV TO AR 1 S/WELD (ORD)
20 AW TO AR TO AE 6 SD S/WELDS (ORD)
21 AW TO AV TO AR 1 SD S/WELDS (ORD)
22 AY TO AX 5 SD S/WELDS (ORD)
23 AZ TO AY 8 SD S/WELDS (ORD)
24 BA TO AS 6 SD S/WELDS (ORD)
25 BC TO AS 2 SD S/WELDS (ORD)
26 BB TO BA 1 SD S/WELDS (ORD)
27 BC TO BA 1 SD S/WELD (ORD)
28 BD TO AS 2 SD S/WELDS (ORD)
29 BE TO BD 2 SD S/WELDS (ORD)
30 BD TO AS TO AK 2 SD S/WELDS (ORD)
31 AR TO AK 5 SD S/WELDS (ORD)
32 AS TO AK 4 SD S/WELDS (ORD)
33 AS TO AK 1 SD S/WELDS (ORD)
34 BD TO AK 4 SD S/WELDS (ORD)
35 AS TO AR TO AE 1 S/WELD (ORD)
36 AT TO AR TO AS 3 S/WELDS (ORD)
37 BF TO AR 1 S/WELD (ORD)
38 BF TO AU TO AT 1 S/WELD (ORD)
39 AU TO AC 4 S/WELDS (ORD)
40 AE TO AC 1 SD S/WELDS (ORD)
41 AV TO AE TO AC 1 SD S/WELD (ORD)
42 AV TO AC 2 SD S/WELDS (ORD)
43 BH TO AR 1 S/WELD (ORD)
44 AR TO AE 1 MIGBRZ (CRT)
45 AR TO AA 1 MIGBRZ (CRT)
46 AR TO AA 1 MIGBRZ (CRT)
47 BH TO AE 1 PROJ WELD (ORD)
48 BG TO AE 1 PROJ WELD (ORD)
50 BH TO AZ 1 PROJ WELD (ORD)
51 BG TO BB 3 PROJ WELDS (ORD)
49 BH TO AS 1 PROJ WELD (ORD)
52 BH TO AR 1 PROJ WELDS (ORD)
54 BK TO BJ 2 SD S/WELDS (ORD)
55 BM TO BJ 2 SD S/WELDS (ORD)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>PANEL – COWL SIDE RT –</td>
</tr>
<tr>
<td>AA</td>
<td>PANEL – COWL SIDE LT –</td>
</tr>
<tr>
<td>AB</td>
<td>PANEL – DASH –</td>
</tr>
<tr>
<td>AC</td>
<td>CROSSMEMBER – DASH –</td>
</tr>
<tr>
<td>AC</td>
<td>CROSSMEMBER – DASH –</td>
</tr>
<tr>
<td>AD</td>
<td>PANEL – COWL TOP INNER – COWL TOP, INR</td>
</tr>
<tr>
<td>AE</td>
<td>PANEL – COWL TOP INNER – COWL TOP, LWR</td>
</tr>
<tr>
<td>AF</td>
<td>REINF – DASH PANEL –</td>
</tr>
<tr>
<td>AG</td>
<td>CROSSMEMBER – DASH –</td>
</tr>
<tr>
<td>AH</td>
<td>SILL ASSY – FRT FLOOR –</td>
</tr>
<tr>
<td>AJ</td>
<td>REINF – I/P –</td>
</tr>
<tr>
<td>AK</td>
<td>BRACKET ASSY – ACCELERATOR PEDAL –</td>
</tr>
<tr>
<td>AL</td>
<td>REINF ASSY – TUNNEL FRT –</td>
</tr>
<tr>
<td>AM</td>
<td>PANEL – DASH LWR –</td>
</tr>
<tr>
<td>AN</td>
<td>BRACKET – STEERING SHAFT –</td>
</tr>
<tr>
<td>AP</td>
<td>STUD.WELD/EXTERNAL – PNT.CUTTER.PILOT.</td>
</tr>
<tr>
<td>AR</td>
<td>STUD.WELD/EXTERNAL – PNT.CUTTER.PILOT.</td>
</tr>
<tr>
<td>AS</td>
<td>REINF – SILL RT –</td>
</tr>
<tr>
<td>AT</td>
<td>CROSSMEMBER – DASH –</td>
</tr>
<tr>
<td>AU</td>
<td>PANEL – COWL SIDE RT –</td>
</tr>
<tr>
<td>AU</td>
<td>PANEL – COWL SIDE LT –</td>
</tr>
<tr>
<td>HE</td>
<td>STUD.WELD/EXTERNAL – PNT.CUTTER.PILOT.</td>
</tr>
<tr>
<td>PT</td>
<td>STUD.WELD/EXTERNAL – PNT.CUTTER.PILOT.</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – CONTROL HARNESS TO COWL TOP INR</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – CONTROL HARNESS (CABIN SIDE) TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – COWL SIDE TRIM TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – SHIFTLOCK TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – HVAC TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – DEAD PEDAL TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – VACUUM HOSE TO DASH</td>
</tr>
<tr>
<td>PT</td>
<td>SPECIAL – HEAL BLOCKER TO DASH</td>
</tr>
</tbody>
</table>
WELD LAYOUT LOCATION GUIDE
12 AD TO AB 30 S/WELDS (ORD)
13 AF TO AD TO AB 4 S/WELDS (ORD)
36 AW TO AA 2L S/WELDS (ORD)
18 AK TO AB 7 S/WELDS (ORD)
19 AM TO AB 11 S/WELDS (ORD)
20 AL TO AB 6 S/WELDS (ORD)
21 AP TO AB 15 PROJ WELDS (ORD)
22 AN TO AB 8 S/WELDS (ORD)
23 AP TO AL 2 PROJ WELDS (ORD)
24 AP TO AT 2 PROJ WELDS (ORD)
37 AX TO AB 2 PROJ WELDS (ORD)
25 AS TO AH TO AA 10/SD S/WELDS (ORD)
26 AH TO AA 9/SD S/WELDS (ORD)
27 AS TO AH 22/SD S/WELDS (ORD)
28 AT TO AB TO AC 3 S/WELDS (ORD)
29 AT TO AM TO AB 5 S/WELDS (ORD)
30 AT TO AB TO AN 6 S/WELDS (ORD)
31 AT TO AB TO AC 1 S/WELD (ORD)
32 AT TO AB 16 S/WELDS (ORD)
<table>
<thead>
<tr>
<th>Code</th>
<th>Part Description</th>
<th>Code</th>
<th>Part Description</th>
<th>Code</th>
<th>Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>PANEL – COWL SIDE RT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>BEAM – LOAD PATH INR UPR LT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>BRACE – TORQUE BOX RT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>REINF – FRT FLOOR RT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>REINF – FRT FLOOR LT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>PANEL – EXTENSION FRT RAIL INR RT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>PANEL – EXTENSION FRT RAIL INR LT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>REINF – EXTENSION FRT RAIL INR RT –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back to Index
01 AC TO AB 5/SD S/WELDS (ORD)
02 AC TO AA 2/SD S/WELDS (ORD)
03 AC TO AB TO AA 2/SD S/WELDS (ORD)
04 AE TO AB 4/SD S/WELDS (ORD)
05 AE TO AD TO AB 2/SD S/WELDS (ORD)
06 AF TO AD 1/SD S/WELDS (ORD)
07 AH TO AA 4/SD S/WELDS (ORD)
08 AG TO AC TO AB 2/SD S/WELDS (ORD)
09 AL TO AK TO AJ 3/SD S/WELDS (ORD)
18 AU TO AT 3 S/WELDS (ORD)
19 AU TO AT TO AJ 12 S/WELDS (ORD)
20 AT TO AJ 4 S/WELDS (ORD)
21 AV TO AJ 2 S/WELDS (ORD)
22 AV TO AT TO AJ 1R/2/L S/WELDS (ORD)
23 AU TO AT TO AW 1R/1L S/WELDS (ORD)
24 AK TO AJ 1/SD FCAW (CRT)
25 AL TO AJ 5/SD FCAW (CRT)
PARTS IDENTIFICATION LEGEND, OVERVIEW

AA PAN – FRONT FLOOR –
AB REINF – TUNNEL –
AC BRACKET – FRONT SEAT RR –
AD BRACKET – FRONT SEAT RR –
AE CROSSMEMBER – FRONT FLOOR PAN FRT RT –
AE CROSSMEMBER – FRONT FLOOR PAN FRT LT –
AF CROSSMEMBER – TUNNEL FRT –
AG RAIL – TUNNEL FRT RT –
AG RAIL – TUNNEL FRT LT –
01 AB TO AA 9 S/WELDS (SAF)
02 AB TO AA 26 S/WELDS (ORD)
07 AF TO AA TO AE 2 S/WELDS (ORD)
08 AG TO AA TO AE 4 S/WELDS (ORD)
09 AE TO AA 13 S/WELDS (ORD)
10 AE TO AA 1 S/WELD (SAF)
11 AE TO AB 2/SD S/WELDS (ORD)
12 AF TO AA TO AE 4/SD S/WELDS (SAF)
13 AF TO AE TO AA 2 S/WELDS (ORD)
14 AG TO AA TO AE 4 S/WELDS (ORD)
15 AE TO AA 14 S/WELDS (ORD)
06 AA TO AG 23 S/WELDS (ORD)
07 AA TO AH TO AG 6 S/WELDS (SAF)
08 AA TO AC 3/SD S/WELDS (ORD)
09 AA TOA F 5/SD S/WELDS (ORD)
10 AM TO AF TO AL 1/SD S/WELD (ORD)
11 AF TO AL 9R/4L S/WELDS (ORD)
12 AF TO AK TO AL 1/SD S/WELD (ORD)
13 AJ TO AK TO AL 2/SD S/WELDS (ORD)
14 AH TO AJ 3/SD S/WELDS (ORD)
15 AH TO AJ TO AF 1/SD S/WELD (ORD)
16 AL TO AM 6/SD S/WELDS (ORD)
17 AP TO AN TO AL 2/SD S/WELDS (ORD)
18 AP TO AM TO AL 2/SD S/WELDS (ORD)
19 AL TO AM TO AF 7/SD S/WELDS (ORD)
20 AF TO AL 1/SD S/WELD (ORD)
21 AL TO AF 5L S/WELDS (ORD)
22 AA TO AF TO AR 7/SD S/WELDS (ORD)
23 AA TO AF 9/SD S/WELDS (ORD)
24 AA TO AT 2/SD S/WELDS (ORD)
25 AA TO AS 10R/10L S/WELDS (ORD)
26 AA TO AS 4R/5L S/WELDS (SAF)
27 AA TO AU 15 S/WELDS (ORD)
28 AA TO AU 4 S/WELDS (SAF)
29 AA TO AV 8 S/WELDS (ORD)
30 AA TO AT TO AV 4/SD S/WELDS (ORD)
31 AW TO AT 1 PROJ WELD (ORD)
32 AA TO AS TO AV 4R/6L S/WELDS (SAF)
33 AA TO AU TO AV 5 S/WELDS (SAF)
34 BC TO BA TO AA 19 S/WELDS (ORD)
35 BC TO BA 18 S/WELDS (ORD)
36 BC TO AJ 2 S/WELDS (ORD)
37 AY TO AX 2 S/WELDS (ORD)
38 AZ TO AY 2 S/WELDS (ORD)
39 BA TO AR 2/SD S/WELDS (ORD)
40 BB TO AB TO AR 2/SD S/WELDS (ORD)
41 BA TO AR TO AF 1/SD S/WELD (ORD)
42 AV TO AT 11/SD S/WELDS (ORD)
43 BA TO AW 1 PROJ WELD (ORD)
44 BD TO BA TO AR 2/SD S/WELDS (ORD)
45 BC TO AA 6 S/WELDS (ORD)
46 BE TO BC TO BA 2/SD S/WELDS (ORD)
47 BE TO BC 2/SD S/WELDS (ORD)
48 BC TO BB 1/SD S/WELDS (ORD)
49 BC TO BB TO BA 1/SD S/WELDS (ORD)

View H
50 AX TO AY 4 FCAW (SAF)
51 AW TO AX 2 FCAW (ORD)
52 AZ TO AY FCAW (SAF)
53 AP TO AN 4/SD FCAW (CRT)
54 AW TO AJ 1 PROJ WELD (ORD)
55 AK TO AJ 2 SD/ FCAW (ORD)
56 BC TO AF 2/SD FCAW
57 AW TO AF 1 PROJ WELD (ORD)
58 BC TO AY 2/SD FCAW (SAF)
59 BF TO AY 2/SD FCAW (SAF)
60 BF TO AA 1 PROJ WELD (ORD)
61 AW TO AA 8 PROJ WELDS (ORD)
62 BG TO AL 1 PROJ WELD (ORD)
63 BG TO AR 2 PROJ WELDS (ORD)
WELD LAYOUT LOCATION GUIDE
01 AC TO AE TO AA 1 S/WELD (ORD)
02 AC TO AF TO AD 1 S/WELD (ORD)
03 AD TO AB TO AA 1 S/WELD (ORD)
04 AF TO AD TO AB 3 S/WELDS (ORD)
05 AC TO AE TO AA 2 S/WELDS (ORD)
06 AC TO AF TO AD 2 S/WELDS (ORD)
07 AD TO AA TO AB 2 S/WELDS (ORD)
08 AD TO AF TO AB 2 S/WELDS (ORD)
09 AC TO AF TO AB 1 S/WELD (ORD)
11 AK TO AA TO AB 1 S/WELD (ORD)
12 AA TO AB 3 S/WELDS (ORD)
13 AG TO AA TO AB 1 S/WELD (ORD)
14 AJ TO AB 12 S/WELDS (ORD)
15 AA TO AL TO AB 3 S/WELDS (ORD)
16 AM TO AB TO AT 4/SD S/WELDS (ORD)
17 AP TO AR 2/SD S/WELDS (ORD)
18 AP TO AB 4/SD S/WELDS (ORD)
19 AP TO AB TO AN 2/SD S/WELDS (SAF)
20 AP TO AN 4/SD S/WELDS (SAF)
21 AM TO AP 1/SD S/WELD (ORD)
22 AS TO AP TO AM 4/SD S/WELDS (ORD)
27 AP TO AR 11/SD S/WELDS (ORD)
28 AP TO AR TO AY 1/SD S/WELD (ORD)
29 AR TO AP TO AB 2/SD S/WELDS (ORD)
30 AP TO AB 12/SD S/WELDS (ORD)
31 AX TO AR TO AA 2/SD S/WELDS (ORD)
32 AP TO AX TO AB 5/SD S/WELDS (ORD)
33 AZ TO AP 12/SD S/WELDS (ORD)
34 AR TO AZ TO AP 6/SD S/WELDS (ORD)
35 AZ TO AP TO AU 2/SD S/WELDS (ORD)
36 AV TO AT TO AB 4/SD S/WELDS (ORD)
37 AV TO AB 14 AD S/WELDS (ORD)
38 AW TO AV TO AB 2/SD S/WELDS (ORD)
39 AY TO AB 17/SD S/WELDS (ORD)
40 AY TO AW TO AB 2/SD S/WELDS (SAF)
41 AY TO AB 14/SD S/WELDS (SAF)
42 AW TO AY TO AB 2/SD S/WELDS (SAF)
43 AC TO AE TO AA 2 MIG BLZ (ORD)
44 AD TO AB TO AA 1/SD MIG BLZ (ORD)
45 AF TO AD TO AB 1/SD MIG BLZ (ORD)
WELD LOCATION OVERVIEW ZONES
Parts Identification Legend, Overview 22

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Description</th>
<th>Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA BEAM – UPR LOAD PATH OTR LT –</td>
<td>AF REINF – INNR BODY SILL RT –</td>
<td>AL REINF – QTR INR BELTLINE LT –</td>
</tr>
<tr>
<td>AB PILLAR – BODY FRT HINGE RT –</td>
<td>AF REINF – INNR BODY SILL LT –</td>
<td>AM REINF – QTR INR D-PILLAR TURNING LOOP –</td>
</tr>
<tr>
<td>AB PILLAR – BODY FRT HINGE LT –</td>
<td>AG PANEL – B-PILLAR INR RT –</td>
<td>AN REINF – RETRACTOR D-PILLAR –</td>
</tr>
<tr>
<td>AC FRAME – WINDSHIELD SIDE OPENING INR RT –</td>
<td>AG PANEL – B-PILLAR INR LT –</td>
<td>AP PANEL – RR WHEELHOUSE QTR RT –</td>
</tr>
<tr>
<td>AD REINF – W/SHIELD FRM INR LWR & FRT DR</td>
<td>AH PANEL – QTR INR RR LT –</td>
<td>AR REINF – C-PILLAR LWR RT –</td>
</tr>
<tr>
<td>HGE MTG UPR RT –</td>
<td>AJ REINF – BODY CTR PILLAR INR RT –</td>
<td>AR REINF – C-PILLAR LWR LT –</td>
</tr>
<tr>
<td>HGE MTG UPR LT –</td>
<td>AK REINF – D-PILLAR UPR RT – ROOF SUPPORT</td>
<td>AS REINF – RETRACTOR C-PILLAR –</td>
</tr>
<tr>
<td>AE RAIL – ROOF SIDE INR RT –</td>
<td>AK REINF – D-PILLAR UPR LT – ROOF SUPPORT</td>
<td></td>
</tr>
</tbody>
</table>

[Back to Index]
05 AG TO AF 13/SD S/WELDS
06 AH TO AJ 9/SD S/WELDS
07 AE TO AH 2/SD S/WELDS
08 AE TO AH TO AJ 2/SD S/WELDS
09 AE TO AB TO AJ 4/SD S/WELDS
10 AE TO AB 2/SD S/WELDS
11 AG TO AE TO AJ 2/SD S/WELDS

Back to Index
19 AN TO AH 4/R S/WELDS
20 AP TO AH 27/R 1/L S/WELDS
21 AP TO AR 4/SD S/WELDS
22 AS TO AH 4/SD S/WELDS
23 AF TO AR 6/SD S/WELDS
24 AH TO AF TO AR 2/SD S/WELDS
25 AF TO AH 1/SD S/WELDS
26 AH TO AR 8/SD S/WELDS
27 AP TO AH 21/L S/WELDS
28 AN TO AH 8/L S/WELDS
PARTS IDENTIFICATION LEGEND, OVERVIEW 23

AA PANEL – BODY SIDE APERTURE RT – W/O CLADDING
AA PANEL – BODY SIDE APERTURE LT – W/O CLADDING
AB TROUGH – LIFTGATE SIDE DRAIN RT –
AB TROUGH – LIFTGATE SIDE DRAIN LT –
AC REINF – BODY CTR PILLAR INR RT –
AC REINF – BODY CTR PILLAR INR LT –
AD REINF – BODY CTR PILLAR INR LWR RT –
AD REINF – BODY CTR PILLAR INR LWR LT –
AE EXTENSION – BODY SIDE APERTURE RR

FASCIA ATTACHING RT – BODY SIDE APERTURE
FASCIA ATTACHING LT – BODY SIDE APERTURE
RR FASCIA ATTACH –
01 AC TO AA 12 S/WELDS (ORD)
02 AD TO AA 10 S/WELDS (ORD)
03 AE TO AA 12 S/WELDS (ORD)
04 AB TO AA 14 S/WELDS (ORD)
05 AG TO AA 4 S/WELDS (ORD)
06 AE TO AA 4 S/WELDS (ORD)
07 AF TO AA 10 S/WELDS (ORD)
08 AF TO AE TO AB 1 S/WELD (ORD)
09 AE TO AB 5 S/WELDS (ORD)
10 AB TO AF 11 S/WELDS (ORD)
11 AF TO AB TO AA 1 S/WELD (ORD)
DODGE CALIBER BODY SIDE APERTURE COMPLETE SECTION

AA PANEL – QTR INR RR RT –
AB TROUGH – LIFTGATE SIDE DRAIN RT –
AC REINF – D-PILLAR UPR RT – ROOF SUPPORT
AD PANEL – BODY SIDE APERTURE RT – W/O CLADDING
AE REINF – QTR INR BELTLINE RT –
AF PANEL – RR WHEELHOUSE OTR RT –
AG REINF – C-PILLAR LWR RT –
AH EXTENSION – BODY SIDE APERTURE RR
 FASCIA ATTACHING RT – BODY SIDE APERTURE
 RR FASCIA ATTACH –
AJ PANEL – B-PILLAR INR RT –
AK REINF – BODY CTR PILLAR INR RT –
AL PILLAR – BODY FRT HINGE RT –
AM FRAME – WINDSHIELD SIDE OPENING INR RT –
AN REINF – INR BODY SILL RT –
AP REINF – BODY CTR PILLAR INR LWR RT –
AR RAIL – ROOF SIDE INR RT –
PARTS IDENTIFICATION LEGEND, OVERVIEW 24

AA PANEL – QTR INR RR RT –
AB TROUGH – LIFTGATE SIDE DRAIN RT –
AC REINF – D-PILLAR UPR RT – ROOF SUPPORT
AD PANEL – BODY SIDE APERTURE RT – W/O CLADDING
AE REINF – QTR INR BELTLINE RT –
AF PANEL – RR WHEELHOUSE OTR RT –
AG REINF – C-PILLAR LWR RT –
AH EXTENSION – BODY SIDE APERTURE RR
 FASCIA ATTACHING RT – BODY SIDE APERTURE
 RR FASCIA ATTACH –
AJ PANEL – B-PILLAR INR RT –
AK REINF – BODY CTR PILLAR INR RT –
AL PILLAR – BODY FRT HINGE RT –
AM FRAME – WINDSHIELD SIDE OPENING INR RT –
AN REINF – INR BODY SILL RT –
AP REINF – BODY CTR PILLAR INR LWR RT –
AR RAIL – ROOF SIDE INR RT –
01 AB TO AA 16/SD S/WELDS (ORD)
02 AC TO AB TO AA 2/SD S/WELDS (ORD)
03 AC TO AB 4/SD S/WELDS (ORD)
04 AD TO AA 3/SD S/WELDS (ORD)
05 AD TO AC TO AA 10 S/D S/WELDS (ORD)
06 AE TO AD TO AA 8/SD S/WELDS (ORD)
07 AF TO AD 8/SD S/WELDS (ORD)
08 AG TO AD 10/SD S/WELDS (ORD)
09 AH TO AF TO AA 1/SD S/WELD (ORD)

Back to Index
10 AE TO AD TO AA 7/SD S/WELDS (ORD)
11 AD TO AE 3/SD S/WELDS (ORD)
12 AG TO AD TO AA 1/SD S/WELD (ORD)
13 AG TO AD 8/SD S/WELDS (ORD)
14 AK TO AJ TO AD 38R/37L S/WELDS (ORD)
16 AL TO AD 9R/7L S/WELDS (ORD)
17 AP TO AJ TO AD 5/SD S/WELDS (ORD)
18 AN TO AD 3/SD S/WELDS (ORD)
19 AN TO AJ TO AD 4/SD S/WELDS (ORD)
20 AN TO AL TO AD 1/SD S/WELD (ORD)
21 AR TO AA 2/SD S/WELDS (ORD)
22 AR TO AL 2/SD S/WELDS (ORD)
23 AR TO AL TO AD 5/SD S/WELDS (ORD)
24 AR TO AD TO AA 8/SD S/WELDS (ORD)
25 AJ TO AD 5/SD S/WELDS (ORD)
PARTS IDENTIFICATION LEGEND, OVERVIEW 25

AA PANEL – ROOF OTR –
AB HEADER – ROOF FRT LWR –
AC HEADER – ROOF FRT UPR –
AE BOW – B-PILLAR LWR –

Back to Index
01 AB TO AA 1 STRUC ADH
02 AB TO AA 18 S/WELDS (ORD)
Parts Identification Legend, Overview 26

AA Panel – Cowl Side RT	AN Reinf – C-Pillar Lwr RT	BA Extension – Body Side Aperture RR Fascia Attaching RT – Body Side Aperture RR Fascia Attaching LT – Body Side Aperture RR Fascia Attach
AA Panel – Cowl Side LT	AN Reinf – C-Pillar Lwr LT	BA Extension – Body Side Aperture RR Fascia Attaching RT – Body Side Aperture RR Fascia Attaching LT – Body Side Aperture RR Fascia Attach
AB Beam – Upr Load Path Otr RT	AP Panel – B-Pillar Inr RT	BC Reinf – RR Closure – RR End Reinf
AB Beam – Upr Load Path Otr LT	AP Panel – B-Pillar Inr LT	BD Trough – Liftgate Side Drain RT – BD Trough – Liftgate Side Drain LT –
AD Bar – Headlamp RT	AS Reinf – Body Frt Hinge Pillar Lwr Door Hinge RT –	BG Header – Roof RR Lwr –
AD Bar – Headlamp LT	AS Reinf – Body Frt Hinge Pillar Lwr Door Hinge LT –	BH Header – Roof RR Upr –
AE Pillar – Body Frt Hinge LT	AT Panel – Otr Inr Lwr RR LT –	BK Header – Roof Frt Lwr –
AF Frame – Windshield Side Opening Inr RT	AU Panel – Otr Inr RR RT –	BL Rail – Roofside Inr RT –
AF Frame – Windshield Side Opening Inr LT	AU Panel – Otr Inr RR LT –	BM Bow – B-Pillar Lwr –
AG Panel – Cowl Top Upper – Cowl Top, Upr	AU Panel – Cowl Top Inner – Cowl Top, Inr	
AG Panel – Cowl Top Upper – Cowl Top, Upr	AV Reinf – RR Wheelhouse RT –	
AH Panel – Cowl Top Inner – Cowl Top, Inr	AW Reinf – Otr Inr Beltline RT –	
AK Reinf – Inner Body Sill RT	AX Plate – Side Sill RT –	
AK Reinf – Inner Body Sill LT	AX Plate – Side Sill LT –	
Al Sill – Frt Floor	Ay Plate – Side Sill RT –	
Al Sill – Frt Floor	Ay Plate – Side Sill LT –	
Am Sill – RR Floor Sidemember RT	Az SideMember – RR Floor Upr RT –	
Am Sill – RR Floor Sidemember LT	Az SideMember – RR Floor Upr LT –	
01 AB TO AA 4/SD S/WELDS (ORD)
02 AC TO AB 29/SD S/WELDS (ORD)
03 AC TO AB TO AA 1/SD S/WELD (ORD)
04 AD TO AB 1/SD S/WELD (ORD)
05 AF TO AH TO AA 2/SD S/WELDS (ORD)
06 AG TO AE 2/SD S/WELDS (ORD)
07 AA TO AE 13/SD S/WELDS (ORD)
08 AF TO AA TO AJ 4/SD S/WELDS (ORD)
09 AE TO AA TO AJ 17/SD S/WELDS (ORD)
10 AM TO AL TO AK 4/SD S/WELDS (ORD)
11 AL TO AK TO AE 2/SD S/WELDS (ORD)
12 AL TO AK TO AP 12/SD S/WELDS (ORD)
13 AM TO AN TO AK 4/SD S/WELDS (ORD)
14 AR TO AS TO AA 1/SD S/WELD (ORD)
15 AS TO AA 3/SD S/WELDS (ORD)
16 AL TO AK TO AS 2/SD S/WELDS (ORD)
17 AL TO AK TO AA 8/SD S/WELDS (ORD)
18 AK TO AL TO AJ 11/SD S/WELDS (ORD)
19 AM TO AT TO AJ 3/SD S/WELDS (ORD)
20 AM TO AN TO AJ 2/SD S/WELDS (ORD)
21 AK TO AM TO AT 3/SD S/WELDS (ORD)
22 AK TO AM TO AJ 3/SD S/WELDS (ORD)
23 AV TO AW TO AU 4R S/WELDS (ORD)
24 AV TO AU 4R S/WELDS (ORD)
25 AX TO AW TO AU 4R S/WELDS (ORD)
26 AX TO AT 6R S/WELDS (ORD)
27 AT TO AX TO AT 1R S/WELDS (ORD)
28 AY TO AT 4R S/WELDS (ORD)
29 AX TO AU 12R S/WELDS (ORD)
30 AX TO AW TO AU 7L S/WELDS (ORD)
31 AX TO AU 15L S/WELDS (ORD)
32 AY TO AT 4L S/WELDS (ORD)
33 AY TO AX TO AT 1L S/WELDS (ORD)
34 AX TO AT 6L S/WELDS (ORD)
35 BA TO BB TO BD 1/SD S/WELDS (ORD)
36 BB TO BD 2/SD S/WELDS (ORD)
37 BB TO BC TO BD 3/SD S/WELDS (ORD)
38 BB TO BA 5/SD S/WELDS (ORD)
39 AZ TO BB TO BA 1/SD S/WELDS (ORD)
40 AZ TO BA 2/SD S/WELDS (ORD)
41 BA TO AZ TO AU 2/SD S/WELDS (ORD)
42 BE TO AU TO BD 1/SD S/WELD (ORD)
43 BE TO BD 1/SD S/WELD (ORD)
44 BE TO BC TO BD 1/SD S/WELDS (ORD)
45 BC TO BD 1/SD STRUCT ADH (ORD)
51 BD TO BH TO BJ 2/SD S/WELDS (ORD)
52 BH TO BD 1/SD S/WELDS (ORD)
53 AU TO AJ TO BJ 2/SD S/WELDS (ORD)
54 AE TO AJ TO BJ 1/SD S/WELD (ORD)
55 BM TO BL 4/SD S/WELDS (ORD)
56 BM TO AP 4/SD S/WELDS (ORD)
57 BK TO BL 8/SD S/WELDS (ORD)
59 AF TO AA 1/SD STRUCT ADH (ORD)
60 AV TO AW 1R STRUCT ADH (ORD)
61 AV TO AU 1R STRUCT ADH (ORD)
DaimlerChrysler
Sealer/Sound Deadener Repair Guide

Publication # 81-316-0431

Addition copies of these publications are available by calling:
1-800-890-4038
This section shows the different locations for Sealers, Sound Deadeners and Structural Adhesives and has been prepared for use by all body technicians involved in the repair of Dodge Caliber.

<table>
<thead>
<tr>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body/Paint Sealer Locations</td>
</tr>
<tr>
<td>Structural Adhesive Locations</td>
</tr>
<tr>
<td>NVH/Structural Foam Locations</td>
</tr>
<tr>
<td>Sound Deadener Locations</td>
</tr>
</tbody>
</table>

DaimlerChrysler Motors Corporation reserves the right to make improvements in design or to change specifications to these vehicles without incurring any obligation upon itself.
SEALER INFORMATION

ALL REPAIRS WHERE PANELS WERE REPLACED HAVE VOIDS THAT MUST BE FILLED WITH SEALANT. SEALANT SHOULD BE APPLIED TO ALL SKIPS, PIN HOLES, IN SEALERS AND WELD BURN THROUGH HOLES ON THE INTERIOR AND EXTERIOR OF THE VEHICLE THAT WOULD PERMIT LEAKAGE OF WATER, AIR OR EXHAUST FUMES. TYPICAL AREAS OF THE EXTERIOR THAT MUST BE SEALED ARE LISTED IN THIS SECTION. AREAS OF THE INTERIOR THAT MUST BE SEALED ARE FLOOR PANS, WHEELHOUSES, DASH PANEL, AND COWL SIDES.

SEALER AMOUNT/BEAD SIZE

4mm DIA* X 1000mm
PUMPABLE

* = DIAMETER

APPLICATION RECOMMENDATIONS

SEALER LEGEND

 italiano THUMBGRADE SEALER

 italiano PUMPABLE SEALER

 italiano HIDDEN SEALER

Back to Index
BODY SEALER LOCATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT ROOF CORNER/APERTURE PANEL</td>
<td>1</td>
</tr>
<tr>
<td>UPPER COWL TOP/COWL SIDE</td>
<td>2</td>
</tr>
<tr>
<td>FRONT WHEELHOUSE</td>
<td>3</td>
</tr>
<tr>
<td>DASH/PLENUM/COWL SIDE PANEL</td>
<td>4</td>
</tr>
<tr>
<td>DASH/STEERING SHAFT BRACKET</td>
<td>5</td>
</tr>
<tr>
<td>DASH/FRONT FLOOR PAN</td>
<td>6</td>
</tr>
<tr>
<td>REAR WHEELHOUSES</td>
<td>7</td>
</tr>
<tr>
<td>RIGHT REAR INNER QUARTER PANEL</td>
<td>8</td>
</tr>
<tr>
<td>LEFT REAR INNER QUARTER PANEL</td>
<td>9</td>
</tr>
<tr>
<td>UNDERBODY</td>
<td>10</td>
</tr>
<tr>
<td>ROOF/BODY SIDE APERTURE</td>
<td>11</td>
</tr>
<tr>
<td>ROOF/ROOF REAR UPPER HEADER</td>
<td>12</td>
</tr>
<tr>
<td>BODY SIDE APERTURE/LIFTGATE DRAIN TROUGH</td>
<td>13</td>
</tr>
<tr>
<td>TAIL LAMP PANEL</td>
<td>14</td>
</tr>
<tr>
<td>REAR FLOOR PAN</td>
<td>15</td>
</tr>
</tbody>
</table>

Preferred Mopar Product:
- Paintable Seam Sealer – Part No. 04318026
Figure 1. ROOF CORNER/APERTURE PANEL
BODY SEALER LOCATIONS

Figure 2. UPPER COWL TOP/COWL SIDE
Figure 3. FRONT WHEELHOUSE
Figure 4. DASH/PLENUM/COWL SIDE PANEL
BODY SEALER LOCATIONS

Figure 5. DASH/STEERING SHAFT BRACKET

Back to Index
BODY SEALER LOCATIONS

Figure 6. DASH/FRON T FLOOR PAN
Figure 7. REAR WHEELHOUSES
BODY SEALER LOCATIONS

Figure 9. LEFT INNER QUARTER PANEL

Back to Index
BODY SEALER LOCATIONS

Figure 10. UNDERBODY
BODY SEALER LOCATIONS

RIGHT SIDE SHOWN, LEFT SIDE TYPICAL

ROOF

SPRAYABLE VINYL SEALER

BODY SIDE APERTURE

Figure 11. ROOF/BODY SIDE APERTURE
Figure 12. ROOF/ROOF REAR UPPER HEADER
Figure 13. BODY SIDE APERTURE/LIFTGATE DRAIN TROUGH
Figure 14. TAIL LAMP PANEL

BODY SEALER LOCATIONS

RIGHT SIDE SHOWN, LEFT SIDE TYPICAL

TAIL LAMP PANEL

LIFTGATE DRAIN TROUGH

PUMPABLE VINYL SEALER

BODY SIDE APERTURE EXTENSION

KEEP HOLES FREE OF SEALER

Back to Index
BODY SEALER LOCATIONS

Figure 15. REAR FLOOR PAN
DODGE CALIBER
STRUCTURAL
ADHESIVE LOCATIONS
NOTE: Structural Adhesives used are a high strength epoxy and a high expansion lower strength antiflutter material. High strength epoxy is used on all areas.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLENUM ASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>SIDEMEMBER ASSEMBLY (1 OF 2)</td>
<td>2</td>
</tr>
<tr>
<td>SIDEMEMBER ASSEMBLY (2 OF 2)</td>
<td>3</td>
</tr>
<tr>
<td>ROOF (1 OF 2)</td>
<td>4</td>
</tr>
<tr>
<td>ROOF (2 OF 2)</td>
<td>5</td>
</tr>
<tr>
<td>BODY IN WHITE – COMPLETE (1 OF 3)</td>
<td>6</td>
</tr>
<tr>
<td>BODY IN WHITE – COMPLETE (2 OF 3)</td>
<td>7</td>
</tr>
<tr>
<td>BODY IN WHITE – COMPLETE (3 OF 3)</td>
<td>8</td>
</tr>
</tbody>
</table>

Preferred Mopar Products:
- Fusor 147 – Part No. 05017147AA
- Fusor 112B – Part No. 05083855AA
- Dispenser – Part No. 05016570AA
STRUCTURAL ADHESIVE LOCATIONS

Figure 1. PLENUM ASSEMBLY
Figure 2. SIDEMEMBER ASSEMBLY (1 OF 2)
STRUCTURAL ADHESIVE LOCATIONS

Figure 3. SIDEMEMBER ASSEMBLY (2 OF 2)
STRUCTURAL ADHESIVE LOCATIONS

Figure 4. ROOF (1 OF 2)
Figure 5. ROOF (2 OF 2)
STRUCTURAL ADHESIVE LOCATIONS

RIGHT SIDE SHOWN,
LEFT SIDE TYPICAL

STRUCTURAL
ADHESIVE

Figure 6. BODY IN WHITE – COMPLETE (1 OF 3)
Figure 7. BODY IN WHITE – COMPLETE (2 OF 3)
Figure 8. BODY IN WHITE – COMPLETE (3 OF 3)
Dodge Caliber

NVH/STRUCTURAL FOAM INFORMATION

SOUND DEADENER
DODGE CALIBER
NVH/STRUCTURAL FOAM/
SOUND DEADENER LOCATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER "A" PILLAR</td>
<td>1</td>
</tr>
<tr>
<td>LOWER "B" PILLAR</td>
<td>2</td>
</tr>
<tr>
<td>INNER "B" PILLAR</td>
<td>3</td>
</tr>
<tr>
<td>LOWER "C" PILLAR</td>
<td>4</td>
</tr>
<tr>
<td>FRONT FLOOR PAN</td>
<td>5</td>
</tr>
<tr>
<td>REAR FLOOR PAN</td>
<td>6</td>
</tr>
<tr>
<td>SPARE WHEEL WELL</td>
<td>7</td>
</tr>
</tbody>
</table>

Preferred Mopar Products:
- Expandable Foam – Part No. 05142864AA
- Dispenser – Part No. 05016570AA
Figure 3. INNER "B" PILLAR

RIGHT SIDE SHOWN,
LEFT SIDE TYPICAL

MASK PRIOR
TO FOAM
APPLICATION

125 GRAMS
OF PURFOAM
SOUND
DEADENER
Figure 6. REAR FLOOR PAN
Figure 7. SPARE WHEEL WELL
DODGE CALIBER
FRAME/BODY DIMENSIONS
FRAME DIMENSIONS

Frame dimensions are listed in metric scale. All dimensions are from center of Principal Locating Point (PLP), or from center to center of PLP and transfer location. Vertical dimensions can be taken from the work surface to the locations indicated.

INDEX

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME DIMENSIONS (PLAN VIEW)</td>
<td>1</td>
</tr>
<tr>
<td>FRAME DIMENSIONS (SIDE VIEW)</td>
<td>2</td>
</tr>
</tbody>
</table>
FRAME/BODY DIMENSIONS

Figure 1. FRAME DIMENSIONS (PLAN VIEW)

Measurements are from center line to holes (PLP’s)

All dimensions are in millimeters
NOTE: P215/55R18 BSW TIRE USED FOR DATUM PLANE

ALL DIMENSIONS ARE IN MILLIMETERS

Figure 2. FRAME DIMENSIONS (SIDE VIEW)
OPENING DIMENSIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE BOX OPENING</td>
<td>1</td>
</tr>
<tr>
<td>WINDSHIELD OPENING</td>
<td>2</td>
</tr>
<tr>
<td>FRONT DOOR OPENING</td>
<td>3</td>
</tr>
<tr>
<td>REAR DOOR OPENING</td>
<td>4</td>
</tr>
<tr>
<td>QUARTER WINDOW OPENING</td>
<td>5</td>
</tr>
<tr>
<td>LIFTGATE OPENING</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 1. ENGINE BOX OPENING
FRAME/BODY DIMENSIONS

ALL DIMENSIONS ARE IN MILLIMETERS

Figure 2. WINDSHIELD OPENING
Figure 3. FRONT DOOR OPENING

ALL DIMENSIONS ARE IN MILLIMETERS

FRAME/BODY DIMENSIONS
FRAME/BODY DIMENSIONS

Figure 4. REAR DOOR OPENING

ALL DIMENSIONS ARE IN MILLIMETERS

Back to Index
FRAME/BODY DIMENSIONS

ALL DIMENSIONS ARE IN MILLIMETERS

Figure 5. QUARTER WINDOW OPENING
Figure 6. LIFTGATE OPENING
GAP AND FLUSH DIMENSIONS
<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>DESCRIPTION</th>
<th>GAP</th>
<th>FLUSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fascia to Hood</td>
<td>5.0 ±1.5</td>
<td>Fascia U/F 2.4 @ Y = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>U/F 2.7 @ Y = 300 &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.75 ±1.5 within 2.0</td>
</tr>
<tr>
<td>2</td>
<td>Fender to Hood</td>
<td>5.0 ±1.2</td>
<td>Fender U/F U/D 1.0 and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.5</td>
<td>C/C 1.4 ±1.5</td>
</tr>
<tr>
<td>3</td>
<td>Headlamp to Fender</td>
<td>2.0 ±1.7</td>
<td>Headlamp U/F 1.0 ±2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>C within 2.0</td>
</tr>
<tr>
<td>4</td>
<td>"A" Pillar to Fender</td>
<td>5.0 ±1.0</td>
<td>±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.5</td>
<td>C within 1.5</td>
</tr>
<tr>
<td>5</td>
<td>Front Door to Rear Door</td>
<td>4.5 ±1.2</td>
<td>Flush above belt and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.5</td>
<td>Front Door O/F ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C within 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Below belt ±1.5</td>
</tr>
<tr>
<td>6</td>
<td>Fuel Filter Door to Body Side</td>
<td>3.0 ±0.8</td>
<td>Fuel Door U/F 0.5 ±0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 0.75</td>
<td>C within 1.0</td>
</tr>
<tr>
<td>7</td>
<td>Rear Door to Body Side</td>
<td>4.5 ±1.2</td>
<td>C within 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.2</td>
<td>C within 1.0</td>
</tr>
<tr>
<td>8</td>
<td>Fender to Front Door</td>
<td>4.5 ±1.0</td>
<td>Fender O/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.0</td>
<td>C within 1.0</td>
</tr>
<tr>
<td>9</td>
<td>Fascia to Fender</td>
<td>0.0 ±1.0</td>
<td>Fascia U/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C within 1.0</td>
</tr>
<tr>
<td>10</td>
<td>Headlamp to Fascia</td>
<td>C/C 2.0 ±2.0</td>
<td>Grille U/F 3.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U/D Net to 4.5</td>
<td>Grille U/F 3.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nom = 2.5</td>
<td>Grille U/F 3.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.5</td>
<td>Grille U/F 3.0 ±1.0</td>
</tr>
<tr>
<td>11</td>
<td>Grille to Fascia</td>
<td>U/D Net = 1.0</td>
<td>Liftgate U/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liftgate U/F 1.0 ±1.0</td>
</tr>
<tr>
<td>12</td>
<td>Liftgate to Roof</td>
<td>6.0 ±1.5</td>
<td>C within 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>C within 2.0</td>
</tr>
<tr>
<td>13</td>
<td>Body Side to Door Header</td>
<td>4.5 ±1.2</td>
<td>Body Side O/F 1.9 ±1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.2</td>
<td>Body Side O/F 1.9 ±1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C within 1.5</td>
</tr>
<tr>
<td>14</td>
<td>Fender to Sill</td>
<td>4.5 ±1.2</td>
<td>Fender O/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 1.0</td>
<td>C within 1.0</td>
</tr>
<tr>
<td>15</td>
<td>Sill to Doors</td>
<td>6.0 ±1.5</td>
<td>Sill O/F 2.8 ±2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>C within 2.0</td>
</tr>
<tr>
<td>16</td>
<td>Fascia to Body Side</td>
<td>0.0 ±1.0</td>
<td>Fascia U/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>C within 1.0</td>
</tr>
<tr>
<td>17</td>
<td>Tail Lamp to Fascia</td>
<td>0.0 ±1.0</td>
<td>Tail Lamp O/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td>Tail Lamp O/F 1.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Nom = 1.5)</td>
<td>Tail Lamp O/F 1.0 ±1.0</td>
</tr>
<tr>
<td>18</td>
<td>Tail Lamp to Liftgate</td>
<td>4.0 ±1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fascia to Liftgate</td>
<td>6.0 ±2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel within 2.0</td>
<td></td>
</tr>
</tbody>
</table>

2007 PM49
Note:
All measurements are in millimeters. O/F = Over Flush U/F = Under Flush.
DODGE CALIBER
FRONT FRAME RAIL SECTIONING PROCEDURE

1. With vehicle mounted to appropriate pulling and 3-dimensional measuring equipment, complete the following procedure paying particular attention to body dimensions while fitting and welding panels.

2. Remove bumper components, cooling module, headlamp, and all other components for clear access to repair area.

3. Remove front rail cap panel on damaged rail.

4. Remove welds holding lower radiator crossmember to damaged rail (if crossmember is damaged, remove completely).

5. Remove welds holding FESM structure to rail (if damaged, remove complete assembly).
6. Mark existing rail as follows:
 a. Right side
 i. On inner rail, mark at 50mm forward of the leading edge of flanged hole in rail.
 ii. On outer rail, continue mark from inner rail.

RIGHT SIDE ONLY
b. Left side
 i. On inner rail, mark at 80mm forward of centerline of rear battery tray weld-nut (located on top of rail).
 ii. On outer rail, continue mark from inner rail.
7. Mark replacement part in same location.
8. On left rail, remove bracket located on inner rail.
9. Using a cut-off wheel, reciprocating saw, or equivalent:
 a. Cut all existing parts on the forward side of the scribe line using care not to damage the material that will not be removed.
 i. Right rail section location:
 When installation of new tip is complete, there is a 6mm hole on the inner rail at the forward edge of the section joint which may need to be recreated or restored.
 ii. Left rail section location:
 When installation of new tip is complete, there is a 10mm hole in bottom horizontal surface of rail which may need to be restored.
 b. Cut all replacement parts on the rearward side of the scribe line again using care not to make any additional damage but do not discard any material yet.

10. Clean all sharp edges and create a slight taper for weld purposes.
11. From the remaining replacement part, cut a 19mm strip from both the inner and outer rail. Clip off the weld flanges, top and bottom, and dress edges. These pieces will be the weld-backer.
12. Prepare welding equipment per the weld chart at the end of procedure.
13. Install the weld-backers into the frame rail, centering them on cut edge. Clamp and tack the weld in position when proper fit is confirmed.
14. Weld using a skip-stitch method until the full length of the joint is completed on both the inner and outer rail. To avoid excessive heat buildup, move between inner and outer rail during welding.

15. Dress welds without removing any base material paying particular attention to the mounting surface of the outer rail.

16. Reinstall bracket removed from left rail.
17. Either install new or reposition the lower radiator crossmember and FESM structure and clamp in place and weld.
18. Install new front rail cap panel.
19. Clean all repaired areas and apply appropriate refinish and corrosion protection materials.
INNER RAIL TO OUTER RAIL
PM49, MK49 AND MK74
WELD PROCESS
CAUTION: All welds should conform to Daimler Chrysler vehicle engineering process standard "PS 9472".

<table>
<thead>
<tr>
<th>WELDING PROCESS</th>
<th>*FLUX CORED ARC</th>
<th>GAS METAL (MIG) ARC</th>
<th>SHIELDED METAL ARC (STICK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Thickness</td>
<td>1.80mm to 1.80mm</td>
<td>1.80mm to 1.80mm</td>
<td>1.80mm to 1.80mm</td>
</tr>
<tr>
<td>Electrode Type</td>
<td>Lincoln Electric Co. Product No: NR-211 MP (Do not Substitute)</td>
<td>AWS ER70S-3 (Do not Substitute)</td>
<td>AWS E 7018</td>
</tr>
<tr>
<td>Electrode Size Inches</td>
<td>.035 Tubular</td>
<td>.045 Tubular</td>
<td>.035 Solid</td>
</tr>
<tr>
<td>Electrode Stick Out</td>
<td>3/8"</td>
<td>3/8" - 1/2"</td>
<td>1/2" - 5/8"</td>
</tr>
<tr>
<td>Polarity</td>
<td>Electrode "-" Work Piece "+", Electrode "-" Work Piece "+"</td>
<td>Electrode "+" Work Piece "-"</td>
<td>Electrode "+" Work Piece "-"</td>
</tr>
<tr>
<td>Shielding Gas</td>
<td>Self Shielded</td>
<td>Self Shielded</td>
<td>75% Ar 25%CO2</td>
</tr>
<tr>
<td>Gas Flow Rate</td>
<td>N/A</td>
<td>N/A</td>
<td>25-35 CFH</td>
</tr>
<tr>
<td>Wire Feed Speed (inches per min.)</td>
<td>90-110 Vertical 60-70 Flat & Horizontal</td>
<td>110-130 Vertical Down 70-90 Flat & OH</td>
<td>245-250 Vertical Down 210-225 Flat & OH</td>
</tr>
<tr>
<td>Approx. Amperage</td>
<td>110-120</td>
<td>160-170</td>
<td>175</td>
</tr>
<tr>
<td>Voltage</td>
<td>15-16</td>
<td>15-18</td>
<td>19-20</td>
</tr>
</tbody>
</table>

*First choice—*Flux Cored Arc Welding Process: Butt joints - Vertical position welds - maintain end of electrode wire at leading edge of weld puddle while traveling down hill to produce maximum penetration into sleeve. This technique works for Gas Metal Arc (MIG) as well. Note: If MIG welding process is selected the galvannealed coating must be removed from both sides of the material adjacent to the weld joint.
Additional Support and Technical Information

DaimlerChrysler Corporation

Plastic Repair Guide

Publication Number
81-170-0012

Welding and Weld Bonding

Publication Number
81-170-03005

Additional copies may be ordered by calling
1-800-890-4038